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GENERAL

Welcome to the third conference held at Bond University on the use of the
mathematics, statistics and computers in sport. Its aim remains to bring together,
every two years, researchers in these fields for an exchange of ideas. The conference
is now an activity of a special interest group of the Australian and New Zealand
Industrial and Applied Mathematicians (ANZIAM). It has been generously
sponsored by ANZIAM and the Australian Sports Commission.

There will be many new faces at the conference, but 11 have attended previous
conferences including Rao Ayyalarayu, Maurie Brearley and Stephen Clarke who
have been to all three.

There are 20 papers to be presented with sporting interests ranging from rowing,
cricket, athletics, golf, netball, soccer, BMX to horse-racing.

I would like to thank the two invited speakers — Stewart Townend (Liverpool John
Moores University, U.K.) and Hugh Morton (Massey University, New Zealand) for
agreeing to participate in the conference and lead discussions. To the other speakers
and attendees I say thank you for making the conference successful.

Finally, I must thank my secretary, Jeanette Niehus, for massaging your disks into
papers that conform to the final form presented here, and for assisting me in many of
the organisational tasks for the conference.

Neville de Mestre
September 1996
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SOME RECENT APPLICATIONS OF ADVANCED MATHEMATICS IN SPORT

M. Stewart Townend!

Abstract

This paper presents an overview of some novel sports-based applications of
established mathematical and computing topics, amongst which are the Fast
Fourier Transform (FFT), neural networks (NN) and Computational Fluid
Dynamics (CFD).

The applications considered are as wide ranging as the mathematical topics
themselves and range from athletics to ocean racing via biomechanics and soccer,
including some discussion of behavioural aspects of sport.

Finally, some thoughts as to future policy and direction are presented.

1. THE CONTRIBUTION OF NEURAL NETWORKS TO BIOMECHANICS

A neural network (NN) is a network of processors each of which behaves in the same
way as the model of a neuron in the brain.

They may therefore be regarded as simulations of the nerve system and so are able to
simulate the decision making of a human expert.

They represent a relatively new method of non-linear multivariate analysis but differ
from it in that they can be taught to recognise patterns by examples instead of
defining the underlying rules.

They can receive large amounts of data simultaneously (their internal structure
preserving any inherent relationships amongst the data) and it is this simultaneity
and contextuality which makes them potentially well suited to the automatic
recognition of patterns.

For example a NN has been developed which is capable of distinguishing healthy
from pathological gait with a success rate of approximately 76% when the gait
patterns are represented by the vertical force associated with consecutive foot strikes
(Holzreiter and Kohle [1]).

A recent review (Miller et al [2]) described other NNs applied in other areas with
similar results while a further recent study has used acceleration data and NNs to
successfully recognise incline, speed and distance during unconstrained walking
(Aminian et al [3]).

IMathematics Education Group, School of Computing and Mathematical Sciences, Liverpool John
Moores University, Byrom St, Liverpool L3 3AF, England.
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It is apparent that with suitable training, just like developing a human expert, a NN
can successfully recognise previously presented patterns from amongst a new set of
patterns. Unfortunately the optimal structure of a NN is application dependent, just
like the topology of the transputer arrangements in parallel computing (Eberhart et
al [4], Zurada et al [5] and Lawrence [6]).

To illustrate the use of neural networks in sport we next describe some recent work
into the analysis of gait patterns which is representative of the application of neural
networks in a biomechanical context (Barton and Lees [7]). Investigation of a motion
as complicated as the human gait cannot be performed in terms of single parameters,
rather all the data must be used simultaneously together with any interdependencies
— in fact precisely the sort of situation in which neural networks exhibit great
potential.

Three conditions of gait were examined (normal, simulated leg-length difference and
simulated leg-weight difference). Hip-knee joint angle diagrams were constructed
for each of eight subjects under each of the three conditions. The virtue of the hip-
knee joint angle is that it represents movement of almost the entire body. Thus it may
be a good indicator of a subject's gait and hence provides a basis for gait pattern
differentiation. Apart from its potential for fine tuning a runner's action, it has
obvious and more worthwhile benefits in assisting in the diagnosis of conditions
such as cerebral palsy and spastic diplegia (Gage [8]).

Simulated leg weight asymmetry Normal walking Simulated leg length difference
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Figure 1: Hip-knee joint angle diagrams

Hip-knee joint angle diagrams, see Figure 1, show the changes in the knee-joint angle
as a function of the hip-joint angle and thus allow investigation of the relationship
between the two angles although the temporal change of each is lost.

Since the temporal dependence has been 'lost’, analysis in terms of time seems
inappropriate, hence the frequency domain analysis leads to the use of Fourier
transforms.

Barton and Lees obtained 128 angle values with constant time interval for each of the
hip and knee angles. The fast Fourier transform (FFT) was applied to these resulting
in 64 real coefficients and 64 imaginary coefficients for each angle. In fact only the
lower frequencies were necessary to define essential characteristics and ultimately 30
pieces of data (2 x 8 real and 2 x 7 imaginary coefficients, the first imaginary
coefficient was always zero ) were used to represent each of the three conditions for
each of the eight subjects, see Figure 2. It is immediately apparent from Figure 2 that
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the FFT coefficients are very similar across the three gait patterns, with differences of
less than one standard deviation between them. This suggests that an isolated
coefficient would not be sufficient to separate the conditions and that discrimination

requires all the coefficients to be considered together - and this is where the neural
network comes in.

The neural network adopted was a four layer, back propagation net with 30 neurons
in the input layer (corresponding to the data set) and 3 neurons in the output layer

(corresponding to the three conditions). Two hidden layers were included (of five
and four neurons respectively), see Figure 3.
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Figure 2: Fourier coefficients of hip and knee angle data

The twenty four data patterns (8 subjects x 3 conditions) were split into a training set
and a test set. The training set data were presented to the NN one after another and
by dynamically changing its internal weights it learned to associate the data patterns
with their corresponding gait condition. Once trained, the test patterns were
presented and the capability of the NN assessed by the assignment ratio (the ratio of
the number of successful recognitions to the total number of test patterns). Four
different training and test subsets of the data were used with the test patterns each
submitted four times (giving 16 NN in all) and the four best NN were retained. Each
of these NN assigned the unknown gait patterns to their correct category in 83.3% of

the cases. The results suggest that neural networks can be applied successfully in the
automated diagnosis of gait disorders.

Neural networks have also been used for assessing different insole materials used in
the construction of running shoes (Barton and Lees [9]). They have proved capable of
recognising different foot pressure points associated with different insole conditions.
The networks respond accurately even to incomplete data sets (such as would be
experienced in the case of a failure of the pressure sole) and, perhaps most important
from the experimental perspective, they have proved insensitive to random noise.
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As a final example of their potential consider Figure 4 which shows examples of
EMG activity of the four large muscle groups of the leg during a number of steps and
the vertical component of the ground reaction force obtained from one of these steps.

The EMG values have been used as the input to a neural network which was trained
to map the signals to the vertical force component (Barton, Lees and Wit [10]). Once
trained, previously unknown EMG data were presented to the NN and the results
indicate that the proposed method acceptably predicts the vertical ground reaction
from EMG data (high correlation coefficient 0.90+0.05 and low r.m.s. error 0.06+0.02).
The implications for biomechanicians are enormous - data can be collected during

unrestrained activity (as opposed to a force platform test) over several strides (rather
than just one) and then analysed later using the neural network.
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2. A GENDER SPECIFIC MODEL OF THE TORSO

The most significant modern study of modelling of the human body is an analysis
conducted on male cadavers and dates from 1955 (Dempster [11]). One of the most
popular models still in widespread use today uses Dempster's data and dates from
1964 (Hanavan [12]).

More recently other experimental techniques have been developed including
radiation techniques and photogrammetry (Miller and Nelson [13]), immersion
techniques (Plagenhoef et al [14]) culminating in 1994 with the use of moment tables
and pendulums (Nigg [15]).

In the majority of these studies women have been treated as men with just more of
the same fat (Vogel and Friedl [16]). In fact, fat regulation in women is considerably
more elaborate with more and different sites for storage and a larger proportion of
fat distributed to the extremities and in subcutaneous locations (Vogel and Friedl
[16]). There also exist structural differences such as a wider pelvis and narrower and
lighter shoulders.

Over the past four decades there have been only four significant studies devoted to
the female body (Mori and Yamamoto [17], Fujikawa [18], Plagenhoef et al [14] and
Hatze [19]). The first two studies used Oriental subjects and hence their results do
not transfer directly to women in other ethnic groups, Plagenhoef's study yielded
information about mass distribution while Hatze's model is of extreme complexity
and allows for gender, variable density, obesity and pregnancy but requires 242
anthropometric measurements per subject.

Hanavan's model and its derivative (Robertson [20]) are based on a 15 segment
model using truncated cones, spheres and elliptic cylinders. Robertson reports that
the segments which deviate most from experimental analysis are the upper and
lower trunk. These are also of course the most obviously different segments with
respect to gender.

Given the equality of opportunity which now exists for both sexes (ranging from
female fighter pilots to increased female participation in sport) the time is right to
develop a more accurate biomechanical model of the female gender.

Recent unpublished work (Gourley [21]) supervised by this author within the Centre
for Sport and Exercise Science at Liverpool John Moores University has been the
development of a model for the upper two thirds of the trunk. The thorax and
abdomen are modelled using stadium shapes, see Figure 5, a shape which was first
proposed in 1990 (Yeadon [22]). Gourley has used the model to determine segmental
masses, centre of mass locations and the moments of inertia about different axes, see
Figure 6.
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Figure 5: Proposed model of thorax and abdomen
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Figure 6: Axes used for centre of mass location and moment of inertia calculations

Based on a sample of 20 female subjects and 8 measurements per subject (plus
another 26 to permit comparison with Robertson's model) the present study revealed
the following results:

Centre of mass y thorax sig. diff. w.r.t. Robertson model
y thorax sig. diff. w.r.t. Plagenhoef model
¥y abdomen not sig. diff. w.r.t. Plagenhoef model

Moments of Inertia I, marginal sig. diff

I, sig. diff. w.r.t Robertson model
I, sig. diff.

Segmental mass sig. diff. w.r.t. Plagenhoef model

The model suggests that in this context the differences which exist with respect to
earlier models are sufficiently significant to warrant further development of this
gender specific model. Future developments will include first the modelling of the
pelvic region followed by refinement to allow for the presence of body cavities.
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To bring the story completely up-to-date a recent study has been undertaken in the
United States (Ackerman [23]) using CAT scans and MRI images of transverse
sections of the body at 1 mm intervals, although the results based on the female data
have yet to be published. We may, therefore, be at the threshold of Eiben's prediction
that by the millennium the categorisation of the human physique of both genders
will be more thorough and objective than had hitherto been thought possible (Eiben
[24]).

3. AN APPLICATION OF CHAOS THEORY AND NOTATIONAL ANALYSIS

Analysis of performance is central to the coaching process and has evolved over the
past decade into a discipline known as Notational Analysis. Methodologies have
been developed for analysing in detail the methods that teams and individuals adopt
in their efforts to win competitions and matches in soccer, rugby, karate and horse
jumping (Hughes and Reilly [25]). The analysis also examines the tactics used and
the contributions and fitness of individual players where appropriate.

As the methodologies have been refined, the information retrieved by them has
increased in volume and complexity. For example one notational analysis system
developed for the analysis of soccer matches (Hughes [26]) associates twenty four
variables with the play. Hughes has designed a 'concept keyboard' which divides the
pitch into a matrix having one hundred and twenty eight touch sensitive cells.
Around this are the 'keys' of the keyboard representing the team members, symbols
for functions and outcomes (e.g. GK for goalkeeper, DRIB for 'dribble’ etc.). Matches
can be analysed either from video tape or directly if the operator is skilled.

The printout of the match analysis is considerable, some 3 ¢m thick, and shows a
wide range of information such as the passing distribution, how possession was lost,
how free kicks were conceded and so on.

Although the computation time of the analysis is quite fast it could potentially be
speeded up if the analytical program was made more discerning so that coaches and
managers could be selective in the parameters they wished to investigate.

Also if both the analysis and the computation time were speeded up, for example by
resorting to parallel computing algorithms, the analysis could be performed as the
match was being annotated so that strategies could be modified in the light of the
information presented.

There is so much activity on the pitch that no one can mentally analyse everything
that is going on. Hughes has evidence that coaches have recalled incorrectly up to 70
per cent of what happened in games when their accounts were compared with
videotapes! The match statistics resulting from a notational analysis are seen
therefore to possess greater reliability than that of even an 'expert witness'. The
technique could thus usefully be applied to warm-up games before a tournament
since that is where managers experiment with different playing styles and different
combinations of players. Reliable soccer statistics are also used as a source of data for
the analysis of injury patterns within the game, leading to changes in the rules to
make the game safer.
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Prior to the technological explosion of the IT age it was assumed that the efficient
solution of non-linear problems only required the gathering and processing of more
information.

However, the first conclusions of chaos theory have shown that simple deterministic
systems with only a few varying parameters can generate purely random behaviour
which cannot be removed by gathering more information. This fundamental
randomness has come to be known as chaos. A chaotic system may thus be defined
as one which for some condition becomes sensitive to initial conditions.

A simple and accessible example of the phenomenon is provided by a popular
snooker trick shot shown in Figure 7.

Figure 7: Snooker trick shot and associated geometry

The shot involves striking the snooker ball labelled 1 with the cue ball so that a
'cannon shot' occurs (ball 1 then collides with ball 2 which then collides with ball 3 ....
until finally ball 7 is potted). This is not a trivial task as the following analysis
demonstrates.

Referring to the notation shown in Figure 7 it can be shown that

_(L=d)
T d

04

If we consider a typical case of L =20 ins = 508 mm and d = 50.8 mm then a1 =90
This angle then becomes the 'input' angle for the ball 2 - ball 3 collision so that

o, =90y = (92)a .
The final error angle is thus
o = (97)a. = 4782969 . ,

an initial error of just 0.00001° will cause a final error of 47.83°!
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These results exhibit the sensitivity to initial conditions which is typical of chaotic
systems.

Recent work at the University of Wales Institute in Cardiff (Hughes and Lyons,
reported in [26]) investigates the potential of applying chaos theory to the coaching
of a soccer team. Although at first sight a soccer match may seem to be a largely
random affair involving twenty two players who can kick a ball anywhere on a pitch
it is in fact a highly structured game in which both teams follow well-established
patterns of play. Amidst these patterns there are often four or five occasions on
which the game deviates from its rigid structure and their evidence suggests that it is
the teams which create and exploit the perturbations which are more likely to be
successful.

Their second application of chaos theory has been to use it to examine the evolution
of a team and its long term strategies throughout a tournament or a season (or
seasons). The team's patterns of play are modelled from the extensive notational
database built up by Hughes. With an intimate knowledge of an opponent's patterns
of play a team can endeavour to develop tactics to upset (i.e. perturb) these patterns.

Of course the sceptics will point out that these 'magic moments' are evident to all -
they certainly don't need a sophisticated mathematical theory to identify them. To a
certain extent that is true but there are many critical incidents which are either not
remembered or recalled incorrectly by the pundits. A complete notational analysis of
a match reveals the orderliness behind the play and makes it easier to identify 'the
ripples of player-induced chaos that upset these patterns.'

Spotting a pattern is, of course, only half the story, exploiting it is the important
stage. While outstanding players create their own perturbations not every team can
afford such players, hence the importance of being able to identify any perturbations
and their effect on the result of a game so that they can be incorporated into the
team's coaching.

As stated above Hughes and Lyons have also studied team performances over a
period of time (for example a tournament or consecutive seasons of play) and found
that many teams have periods of equilibrium (successful or otherwise) comprising of
a settled team and a comfortable style of play. Introduction of a new player or a
change of style 'leads to a second phase - a period of chaos for which the outcome is
uncertain.' Ultimately a new equilibrium is reached which may or may not be more
successful than the first stage.

Their research aim is to identify how the successful teams emerge even better from
the second stage. As Lyons remarks (reference [26]) 'investing in chaos may prove
beneficial for teams if they have been relatively unsuccessful over a period of time.

Perhaps we need to introduce a culture where informed risk taking is the norm
otherwise systems never move into the second stage of chaos that allows evolution of
a new team'.
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4. MODELLING THE EFFECTS OF TRAINING

As athletes continually strive to improve their performance there is a very real risk
that in their enthusiasm they will overtrain and either injure themselves or adversely
affect their performance due to fatigue.

A recent study (Morton [27]) has modelled an athlete's response to training by
adapting the established dosage response model used in pharmacological studies.
The training input (measured in arbitrary units) is equivalent to the drug dosage and
the output (fatigue, performance response, ...) is equivalent to the performance
response to the drug. Figures 8 and 9 show respectively the time dependent response
of a subject to the administration of a drug and the general pattern of the effect of a
daily 'dose' of training on an athlete's fitness (or fatigue). The parallels are self
evident.

Figure 8:

600 —— . - ; :

500

3
Days

Figure 9: General pattern of the effects of a daily dose of training on fitness or fatigue
(arbitrary vertical scale)

For the athlete and coach the benefit of such a model is that it offers the potential to
maximise future performance while minimising the risks of overtraining. It offers an
alternative to models based on optimal control theory as exemplified by Maronski
(references [28], [29]).

Morton's model first defines a unit of measurement which provides a quantitative
measure for the 'dose’ of training administered. The effects of training are to increase
both fitness and fatigue, both of which will subsequently decay at different rates if
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no further training is undertaken. Successive bouts of training will enhance fitness
but with a progressively smaller incremental benefit and concurrently fatigue levels
will also increase towards a plateau. The performance of the athlete is defined in
terms of an index equal to the difference between fitness and fatigue and is shown
over a longer period in Figure 10, where there is an initial decrease in performance in
response to a new training load. Curtailment, or cessation, of training results in
fitness, fatigue and performance patterns as shown in Figure 11 from which the
benefits of tapering the training are immediately apparent.
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Figure 10: Fitness (open circles), fatigue (closed circles) and performance (open triangles) as
functions of daily dose of training; after Morton

5000 T T '
4000 P\ -
AN
3000 { °\ .
2000 F \ v\ i
~v
V/ \ §9\
1000 BN \’\v\v .
o\. \¢\v
0 L T, ———d
0 1 2 3
Months

Figure 11: Fitness (open circles), fatigue (closed circles) and performance (open triangles)
after cessation of training; after Morton

Quantitative measures of fitness, fatigue and so on are provided by various
biomechanical markers such as iron status in female long distance runners, serum
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enzyme activities and glutamine (Banister and Hamilton [30], Banister et al [31] and
Rowbottom et al [32]).

These data have enabled Morton to carry out many simulations of his model. He
concludes that for optimal performance the heaviest training loads should be applied
on alternate days during the twelve to fourteen weeks prior to competition and that
a period of about two weeks of very light training should immediately precede the
competition. His conclusions reflect the training programmes adopted by many
athletes in sports as diverse as track and field, swimming and weightlifting. The
model is therefore extensively validated and its development could lead to further
increases in performance.

5. COMPUTATIONAL FLUID DYNAMICS (CFD) AND YACHT DESIGN

In 1907 F.W. Lanchester stated that 'the problem of yacht mechanics resolves itself
into an aerofoil combination in which the aerofoil acting in the air (the sail) and that
acting under the water (the keel) mutually supply each other's reaction'.

This is as true today when the rewards for success in ocean racing can be enormous
and hence design techniques which will enhance a yacht's performance are eagerly
sought. The methods of computational fluid dynamics (CFD) are now used to
optimise the hull design of yachts and catamarans.

The method represents a sophisticated modelling technique which replaces much of
the expensive and time consuming tank testing thus reducing development time and
improving design. CFD techniques have already been used to optimise the hull
design of some competitors in the American cup races and currently are used to
assist in the hull design of the ILC40 class of yachts.

The design of the hull(s) of a yacht or catamaran interacts with the rudder design
since the hull decelerates and diverts the flow around it.

A CFD analysis represents the hull-rudder assembly by a large number of panels.
Solution of the hydrodynamic equations is mathematically challenging due to the
size of the problem, the numerical instabilities which exist in the wake and the need
to perform numerical differentiation of the potential function in order to obtain the
pressure distribution over the hull-rudder surface. CFD allied to a parallel
computing methodology represents a practical design tool which permits geometric
variations in hull design and the analysis of a range of flow conditions.

Above the surface, the distributed loads on the sails are needed for structural
calculations. A method has been developed for predicting the viscous flow past
yacht sails with structural deformation (Fiddes [33]). The method synthesises
aerodynamic and structural methods, the finite element based structural code having
originally been developed to predict the behaviour of membrane structures such as
the Olympic Stadium in Munich.

Multihulls present special problems despite their inherent advantage of large
transverse stability. The potential for improved design here lies in enhancing their
seakeeping qualities. For example the height of the cross structure is important in
order to avoid too much slamming in head seas, while the hull separation is
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important in order to avoid any hull-hull interactions. For such interactions to be
avoided then the waves generated at the bow of one hull must not actively interfere
with the other, from which it follows that the bow waves must be swept back at an
angle less than

arctan (H/L,,)

relative to the centre line of the hull, where H is the hull separation and L, is their
waterline length.

Most recently a radical new design of ocean racing yacht has appeared (Aqua
Quorum designed by Adrian Thompson) which her skipper, Peter Goss, has likened
to a fifteen metre surfboard. Apart from her lightness (the bare hull will float in 0.3m
of water and can be lifted by six men) the interest to this conference lies in her
compound pendulum keel.

The keel consists of a lead bulb, of mass two thousand five hundred kilograms,
suspended at the end of a steel pendulum. Inside the yacht two hydraulic rams can
push the keel out to windward to an angle of up to thirty degrees. The designer
claims that this keeps the yacht upright (therefore sailing faster) than a fixed keel.
The 'surfboard' is achieved by the combination of retractable dagger boards (as
found on a sailing dinghy) and the swinging keel.

The acid test for the design will come in November 1996 in the Vendée Globe single
handed, non-stop around-the-world race.

Is it not amazing that despite the application of complex techniques such as CFD,
yacht design may still be significantly influenced by something as mundane as a
compound pendulum?

6. THE FUTURE

The next few years will surely see more widespread sports-oriented applications of
the following mathematical techniques discussed.

(i) Parallel Computing — to process the increasingly large data sets which result
from ever increasingly sophisticated experiments and the application of
advanced numerical methods.

(ii) Computational Fluid Dynamics (CFD) - providing optimisation of hull and sail
design of yachts and catamarans. There has already been a noticeable impact in
the Americas Cup races. The extremely complicated fluid motions around the
swimmer may also be amenable to CFD analysis.

(iii) Chaos and Catastrophe Theory — these theories which currently provide
qualitative explanations for sudden changes in the behaviour of a system could
be applied to examine and possibly predict the social problems associated with
sudden outbreaks of violence both on and off the soccer pitch.

(iv) Neural Networks — their use as a diagnostic tool will surely become more
widespread in areas such as biomechanics and exercise physiology as the
experimental designs adopted there became more complex.
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(v) Optimisation techniques - although these have been illustrated with
applications to the training process they are already widely used for tactical
and strategic analysis both within sport and elsewhere.

To pass judgement today on the potential impact of any of these mathematical fields
is rather like trying to estimate the size of a wave which is still on the horizon in
Newton's 'great ocean of truth." All we can say is that it began deep in the ocean and
that it has travelled faster than most. These are precisely the attributes of tidal waves,
the ones which sooner or later affect us all.
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LOW-DRAG ROWING SHELLS

E. O. Tuck! and L. Lazauskas?

Abstract

A displacement vessel of a given loaded weight has a theoretical optimum length
which minimises its total (viscous plus wave) calm-water drag. This length is
usually somewhat greater than that of conventional merchant or naval ships but is
in an appropriate range for competition boats such as rowing shells. Some simple
examples are given to illustrate this property. Genetic algorithm techniques are
then used to find optimum dimensions for rowing shells over a wide range of
speeds and displacements, with a fixed assumption about the waterline, cross-
section, and buttock shapes. Michell's integral is used for the wave resistance, the
1957 ITTC line for the skin friction, and a simple empirical formula for the form
drag.

1. INTRODUCTION

Consider first a class of monohull ships moving steadily ahead in flat calm deep
water. Fix the displacement, draft, speed, and hull shape. The length is then
essentially the only variable allowed. At any given length, adjust the beam by
uniform scaling of all offsets, so as to achieve the prescribed displacement; longer
ships are thinner. Now vary the length until the total (viscous plus wave) drag
Rt=Rv+Rw is minimised.

The above simplified ship optimisation problem, with length as the only variable,
usually possesses a non-trivial solution, i.e. a finite optimum length, for the
following reason. Viscous drag Rv is predominantly skin friction, which is
proportional to surface area, and as a body of a given volume gets longer and
thinner, its surface area increases. Hence viscous drag increases with length at fixed
displacement.

On the other hand, for conventional ships at conventional speeds, wave resistance
Rw generally decreases as the shiplength increases. Since we are holding the speed U
fixed, as we increase the length L we are decreasing the length-based Froude number
F=U/sqrt(gL). At fixed displacement, and at most relatively low Froude numbers,
wave resistance is a (rapidly) increasing function of Froude number, and therefore
decreases with increasing length. This wave-reducing advantage of long ships is very
much part of the naval architectural art.

1Department of Applied Mathematics, The University of Adelaide, Adelaide SA 5005

2Department of Applied Mathematics, The University of Adelaide, Adelaide SA 5005
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Since there are opposite trends with length in the two constituents of the total drag,
there must be a minimum for their sum, at some non-trivial intermediate length.
That length is generally somewhat larger than for conventional ships, but not
necessarily so for rowing shells and other competition boats.

In fact, sometimes there is more than one local minimum in the graph of total drag
versus length, and this phenomenon is discussed in more detail in the following
section. There is often a delicate interplay between local and global optima, which
makes for an optimisation process that is quite difficult to analyse. In order to deal
with this problem, we use here a powerful general purpose technique, described
later, called "genetic algorithms".

In the present paper, we perform an exhaustive treatment of this optimisation
problem for a family of monohull vessels, covering a large range of speeds . We hold
the hull shape, displacement and speed fixed, and allow the draft as well as the
length to vary until the minimum total drag is achieved. We treat viscous drag as the
sum of skin friction (estimated by the 1957 ITTC line) and a generally small but
sometimes crucial form drag contribution which is estimated by an empirical
formula. We use Michell's integral for the wave resistance, which is only accurate for
thin ships. However, this is a more than usually good assumption for the class of
extremely fine hulls that arise from this optimisation process.

The main purpose of the present study is to provide a benchmark, from which
extended studies can follow. One class of such extensions obviously involves
allowing the shape of the hull to vary. We present here results for a very fine type of
hull, appropriate for high-speed and sporting-type vessels. When there are length (or
other) restrictions, and hence (for shorter-than-optimal ships) a greater contribution
of wave resistance to the total drag, multihulls can have less total drag than
monohulls of the same length, because of the potential for favourable hull-hull
cancellation of wave resistance. Work on both of these extended studies is nearly
complete and will be reported elsewhere.

However, perhaps of greater importance is inclusion of further constraints, such as
constraints on maximum length or minimum beam, which arise inevitably from
commercial, structural, safety, seakeeping, or sporting requirements. When these
constraints are imposed, the ship proportions will return to the more conventional
range, but at a price in terms of increased total drag. It is of value to know just how
much of a price is being paid.

1.1 An illustrative example

In the present section, we first give an example illustrating the character of the
results obtained in the present study. Further results are presented in more
generality and in nondimensional form later. For this example, we confine attention
to a "ship" of one-tonne displacement, representative of a (large) rowing shell, and
use dimensional units.

Figure 1.1 shows two typical examples of graphs of total drag versus length (in
metres) at a fixed speed, for such a vessel. For the present purpose, it is not essential
how the drag is determined or scaled, but we should note that it does include an
allowance for form drag, discussed later. The solid curve is at a fixed speed of 5.56
knots and the dashed curve at only a very slightly higher speed of 5.59 knots. In both
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cases, there are two prominent minima, i.e. two distinct (and remarkably different)
lengths are locally favourable, and define "best" and "second-best" boats. At the
lower speed, the longer boat (13.2 metres length) is better than the shorter boat
(9.8m), whereas at the higher speed, the shorter boat (9.6m) is superior to the longer
boat (12.3m). Thus, as we vary the speed and other parameters, there may occur an
interchange between two local optima, so that the optimum length may appear to
change discontinuously. These changes can occur over a remarkably narrow range of
speeds.

This type of discontinuity in the optimum length is shown in Figure 1.2, again taken
from the family of one-tonne monohulls. This figure gives the optimum length in
metres as a function of the speed in knots. The discontinuities indicated above occur
only at relatively low speeds, notably at about 5.6 knots (where the change between
the two curves of Figure 1.1 occurs) and 4.3 knots, with smaller discontinuities at
even lower speeds.
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Figure 1.1: Comparison of total resistance for two one-tonne monohulls.

At speeds between the discontinuities, the Froude number based on boatlength
remains essentially constant, and examination of the variation of wave resistance
with Froude number indicates that this constant value corresponds to a local
minimum of wave resistance. What is happening as we increase the speed is that, in
attempting to design for minimum total drag, we simultaneously increase the
boatlength, in order to stay at that local minimum. This continues as long as possible
while we increase the speed, and when it is no longer possible, the optimum boat
suddenly decreases its length, so that the Froude number suddenly jumps to the next
higher local minimum, avoiding the local maximum in between. This process is
intuitively like changing gears!

The length variation in the example of Figure 1.2 is continuous for all speeds above
5.6 knots. However, as is discussed later, if form drag is neglected, there can also be
an apparent high-speed discontinuity. It is important to note that, as indicated by
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Figure 1.1, there is no discontinuity in the actual total drag at these speeds, merely an
interchange in the roles of "best" and "second-best" boats. At the speeds where the
optimum length changes discontinuously, the residual total drag tends to reach a
local maximum, where its rate of change with respect to speed changes
discontinuously.

15 T

Figure 1.2: Optimum length for a one-tonne monohull

Although these discontinuities are of interest in their own right, they are not
necessarily the most important feature of Figure 1.2. They depend on the fact that the
wave resistance possesses minima, and these minima are to a certain extent
magnified by the theoretical procedure (here Michell's integral) used to compute
wave resistance. If more empirical means are used to estimate wave resistance, with
the effect of smoothing out the humps and hollows in the wave resistance variation,
there will be a consequent reduction in the size of the discontinuities. However, so
long as there are at least two minima in the wave resistance curve, a discontinuity is
inevitable, no matter what method is used to estimate wave resistance.

Above 5.6 knots, the optimum length of a one-tonne vessel varies smoothly, and it is
unlikely that the optimum length is sensitive to the procedure for wave resistance
computation. In fact, the range of speeds above that where discontinuous length
changes occur is the one of greatest interest in practice; for example, it is the
competitive speed range for rowing shells. In that range, the results are relatively
robust, and show no surprising features.

2. BASIC CONSIDERATIONS
2.1 Hull geometry

In this study, we present results for one hullform only — a canoe body defined by
parabolic waterlines, elliptical cross-sections, and a parabolic keel line. Although this
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form is an obvious idealisation, there has recently been an appeal (Insel and Molland
1991) for further work on similar hull shapes.

For this hullform, the block coefficient is Cb = 0.417 and the prismatic coefficient is
Cp =4 Cb/pi = 0.531. Clearly this is a much finer type of hull than that of a typical
merchant ship, but is relevant to sporting canoes and hulls of special high-speed
vessels. It is particularly appropriate for slender vessels with the high length/beam
ratios that we shall find optimal.

2.2 Wave Resistance

We use Michell's integral (Michell 1898; see also Tuck 1989) to estimate the wave
resistance Rw of the ship. This requires evaluation of a triple integral, one integral in
each of the length-wise and draft-wise co-ordinate directions, and one integral with
respect to the angle "theta" of propagation of the ship-generated waves. The
numerical method used here for evaluating these integrals is described fully in Tuck
(1987). We use up to 81 stations, 81 waterlines, and 320 intervals for the integration
with respect to theta. This is an unusually high degree of precision, and is sufficient
to eliminate any numerical artefacts in the integration, which is a common source of
error in the use of Michell's integral

Michell's integral depends for its validity on the ship being thin, and is sometimes
considered (perhaps unfairly) to be insufficiently accurate for use with ships of
conventional proportions. However, the hulls produced by the optimisation process
in this study are significantly thinner than conventional ships, and there is good
evidence that for such slender vessels Michell's integral is satisfactory. For example,
Hanhirova et al 1995 (see also Tuck 1989 and Chapman 1972) report that for length-
based Froude numbers above 0.35, accuracies relative to measured residuary
resistance of better than 10% are achieved by Michell's integral for hulls with
length /beam ratios of the order of 10.0. The optimised hulls in the present study are
even more slender.

In any case, the hulls resulting from the optimisation process also have the property
that their wave resistance is generally only about 10% of the total, so that the
absolute accuracy of the wave resistance measure is not critical. This proportion of
wave resistance to total drag is lower than what is usually encountered with
conventional ships, since the present optimum is in part achieved by increasing the
length beyond the conventional, so as to reduce the influence of wave resistance.
Even though the wave resistance is then only a small component of the final total
drag, it remains a critically important component nevertheless in controlling the
optimisation process; after all, if there was no wave resistance at all, short ships of
minimum surface area would be preferred.

2.3 Viscous Resistance

The viscous resistance Rv can be written as

Rv = %pUZS(Cv)
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where p is the water density and S the wetted surface area of the hull. When skin
friction dominates, the drag coefficient Cv approximately equals Cf, where Cf is a
skin friction coefficient which can be estimated using the ITTC 1957 ship correlation
line (Proc. 8th ITTC).

Cf = 0.075/(log10R-2)?

where R = UL/v is the Reynolds number; v (approximately 0.000001 metres-
squared /second) is the kinematic viscosity.

We have used the full length of the waterline for L in the definition of the Reynolds
number; however there are other possibilities. Gerritsma et al. (1981) use 0.7L in their
study of the resistance of a systematic yacht hull series, reasoning that this defines a
kind of average length.

2.4 Form Effects

As a correlation line, the ITTC 1957 line already contains some allowance for three-
dimensional effects, and two recent ITTC Committees have recommended that
additional corrections not be made in routine resistance predictions of high speed
craft (Insel and Molland 1991, p. 16). However, including a form factor specific to the
hullform under consideration can often give better estimates of the viscous drag.
This factor is difficult to estimate and may vary with speed because of (among other
things) changes in trim and sinkage.

In their examination of eight-oared rowing shells, which have a hullform not unlike
the canoe body examined here, Scragg and Nelson (1993) found a simple empirical
formula for the form factor of these hulls. The viscous resistance coefficient is written
as

Cv = (1+k)Cf
where
k = 0.0097(theta_entry + theta_exit)

Here, theta_entry and theta_exit are the half-angles (in degrees) of the bow and stern,
respectively, at the waterplane.

2.5 Some Effects Neglected

Wave-breaking and spray resistance is neglected. Wave-breaking resistance for our
fine, sharp-bowed hulls, would be negligible at relatively low speeds. Spray
resistance seems to be one of the reasons form factors are difficult to calculate at high
speeds.

We assume that there is no effect of dynamic vertical forces, which at low speeds
account for sinkage and trim. At high speeds, dynamic forces are upward and yield a
lift rather than sinkage; hence planing, and we neglect that. The present results are
for displacement rather than planing conditions, although for completeness we
exhibit them even in speed ranges where planing would be expected.
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Shallow-water effects can be important in some applications, e.g. see Millward (1992)
for catamarans, and Scragg and Nelson (1993) for eight-oared rowing shells.
However, we retain the infinite-depth assumption here. We also neglect any lateral
flow domain restrictions; see Doctors and Day (1995) and Day and Doctors (1996) for
the case of a ship moving in a channel.

For rowing vessels, we do not make any allowance for changes in the centre of
gravity or the consequent change in trim due to the continually changing position of
the rowers. The present analysis is done on a steady-flow basis, and hence relates to
the average conditions during a race, neglecting speed variations due to racing
conditions, as well as unsteady variations during an individual rowing stroke.

3. PREDICTION OF OPTIMAL PARAMETERS

Once we have a theory that gives reasonable predictions of the total resistance, it
seems natural to search for "sensible" parameter configurations minimising that
resistance. Many engineering design problems can be cast into the form of
optimisation problems. For example the problem addressed in this paper can be
formulated as: '

Minimise the real-valued function f(x1, X2, ..., Xn), with each real parameter x; subject
to (domain) constraints a; < x; <b; for some real constants a; and b;.

Many techniques exist for solving optimisation problems such as the one described
above, but these vary greatly in efficiency and the quality of the final solution for a
given number of function evaluations. No single technique is best for all design
problems. Gradient-based methods work well with smooth, unimodal functions, but
may yield local optima for multimodal functions. Heuristic algorithms can increase
search efficiency, but at the expense of guaranteed optimality — they do not always
find the global optimum.

3.1 Genetic Algorithms (GAs)

GAs are adaptive search methods that use heuristics inspired by natural population
dynamics and the evolution of life. They differ from other search and optimisation
schemes in four main respects (Dhingra and Lee 1994):

e  Search proceeds from a population of points, not from a single point.
e  They use a coding of the parameters, not the parameters themselves.

*  Objective function values guide the search process. They do not use gradients
or other problem-specific information.

e  State transition rules are probabilistic, not deterministic.

In the present study, we use a non-traditional GA similar to Eshelman's (1991) CHC,
augmented with, among other features, hill-climbing routines, cataclysmic restarts
and incest prevention. The resulting computer program, called "GODZILLA" for
Genetic Optimisation and Design of Zoomorphs, is described in Lazauskas (1996 in
preparation).
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3.2 GODZILLA

GODZILLA's general operation can be described quite succintly: create and evaluate
new (candidate) designs until some termination criterion is met. Termination can
occur when a certain number of designs have been evaluated, or after a prescribed
amount of time has elapsed, or when the algorithm seems to be making no further
progress.

GODZILLA begins the optimisation process by creating an initial population of (real-
valued) design vectors and calculating the total resistance for each design. Initial
designs are randomly generated, although the population can also be "seeded" with
previously found good designs.

Genetic operators and hill-climbing operators are used to create candidate designs.
Genetic operators create new (offspring) vectors from two parent vectors in the
population, using heuristics inspired by the recombination of DNA. There are too
many varieties to here discuss individual strengths, deficiencies and peculiarities.
GODZILLA's primary genetic operator is one gleaned from fuzzy set theory
described in Voigt et al (1995). After evaluating the total resistance of the offspring,
GODZILLA replaces the worst individual in the population with the offspring if the
offspring's total resistance is lower. This replacement strategy guarantees that the
best individual in the population is never replaced by an inferior individual.

The method used to select parent vectors from the population can have a substantial
influence on the performance of GAs. GODZILLA uses binary tournament selection.
In this method, two individuals are selected without replacement from the
population. The individual with the lower total resistance becomes the first parent. A
second binary tournament determines the other parent.

One form of hill-climbing operator used by GODZILLA, Stochastic Bit-climbing,
creates a candidate vector by adding or subtracting small increments from each of
the parameters of the best design vector found so far. This allows the program to
explore more closely promising regions of the search space found by the genetic
operators. GODZILLA also incorporates another hill-climbing technique called the
Simplex Search Method. This method, which is not to be confused with the Simplex
Method of linear programming, is described in Reklaitis et al (1983).

The field of evolutionary computation is expanding very quickly, and almost all
communication occurs via the electronic Internet. The Usenet group, comp.ai.genetic,
is a very useful and important resource.

4. RESULTS
4.1 Method of presentation

Since there is no length restriction, but the displacement D is fixed, the appropriate
length parameter for scaling is the cube root L*=D”(1/3) of the displacement. Results
are presented in a non-dimensional manner as a function of the (volumetric) Froude
number Fnv=U/sqrt(gL*) based on that artificial length. In fact, were it not for scale
(Reynolds number) effects, all results would be universal functions of this Froude
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number, and displacement would be irrelevant. For example, the final minimum
total drag Rt=Rv+Rw is expressed in terms of the coefficient

Ct=Rt/((1/2) p U*L?

which would be a function of Fnv alone were it not for the fact that the skin friction
coefficient depends on Reynolds number.

In order to exhibit this scale effect of displacement, we carry out the optimisation at
fourteen fixed (dimensional) displacements relevant to rowing classes, ranging from
0.075 tonnes up to one tonne. In fact we have also computed results for even larger
vessels, up to one million tonnes.

For definiteness, we give most results for the fixed displacement of one tonne. Some
such results have already been given in Figures 1.1 and 1.2. It is notable that for this
particular displacement, L*=1 metre, so that the non-dimensional length can also be
interpreted as the actual length in metres. The volumetric Froude number is also
uniquely proportional to the actual speed in metres/second or knots, and Fnv=1
occurs at 6.1 knots for a one-tonne vessel.

It is important to bear in mind that none of the Figures 2 and 3 to follow, where the
total drag coefficient Ct is plotted against the volumetric Froude number Fnv, can be
interpreted in the usual naval architectural manner as a graph of drag versus speed
for a given ship. As Fnv varies, the ship itself changes its shape, and in particular its
length, so as to keep the drag as small as possible.

To produce the results in Figures 2(a)-2(e), we performed the optimisations at 83
different speeds. For the case with no form drag, the volumetric Froude numbers
corresponding to these speeds are 0.100, 0.125,...,0.675; 0.680, 0.685,...,0.700; 0.725,
0.750...,0.900; 0.905, 0.910...,0.925; 0.950, 0.975; 0.980, 0.985,...,1.0; 1.025, 1.050,...,1.2;
and 1.3, 1,4,...,4.0. The very small speed increments at the low end of the range were
needed to capture the discontinuities described earlier. Similar ranges and
increments were used to produce the plots for the case where form drag has been
included.

We used a population of 64 during the optimisation. Each of the design problems
was run with at least five different initial populations. A minimum of 5,000
resistance evaluations were performed during each run. To investigate further the
previously discussed discontinuities, additional runs were performed with the
search domain constrained in such a manner as to disallow one of the alternative
solutions. This is an extremely tedious process because we don't know in advance
exactly where the discontinuities might occur. Whether we like it or not, human
input and understanding is still essential to complex engineering design systems.
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4.2 Monohull without form drag

The dashed curve of Fig. 2(a) shows Ct as a function of volumetric Froude number
Fnv, for a one-tonne boat. This is the residual value of the total drag coefficient, after
the boat's dimensions have been optimised to minimise Ct without any allowance
being made for form drag. The hull parameters that produce these optimal Ct's are
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Figure 2(a): The effect of form factor on the optimum total resistance of a one-tonne

monohull.

shown as the dashed curves in Figures 2(c)-2(e).
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Figure 2(b): The effect of form factor on the optimal proportion of wave resistance of a one-

tonne monohull.
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Fig. 2(b) shows wave resistance as a fraction of the total drag. There is considerable
scatter at low Fnv. This could be due to long shallow regions in the "fitness"
landscape, where for example, one length is as good as another. Although Ct
remains the same, Cw/Ct may vary. GODZILLA searches for the lowest total
resistance and if it encounters two or more combinations of parameters with almost
the same Ct, it cannot prefer one to the other. In these regions, it could be important
to perform the integrations more accurately. In any case, wave resistance is less than
12% of the total for all Fnv<3.25.

The most obvious feature of the dashed curve in Figure 2(b), however, is the sudden
increase in the proportion of wave resistance for Fnv>3.25, a rather high speed (of
the order of 20 knots for a one-tonne vessel) near the upper end of the range being
considered in this study. Figure 2(c) shows that the optimum length also drops
sharply to a very low level at this speed. This discontinuity is essentially an
interchange in the roles of two local minima, as in Figure 1.1. For Fnv<3.25, the
longer boat is best; for Fnv>3.25 the shorter boat is best, and in the present case, the
shorter boat is so short as to be quite unrealistic. Indeed, this boat almost eliminates
its wave resistance by going to a very high rather than a very low conventional
Froude number. Minimum viscous drag dictates minimum surface area, and that
inevitably pushes the optimum toward a hemispherical geometry. In the present
case, other constraints prevent this hemisphere being achieved exactly, but this class
of "optimum" boat does tend to have length comparable to the beam and draft.
Clearly this is not a realistic conclusion, and in particular would lead us to question
the validity of neglecting form drag.

0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0

Figure 2(c): The effect of form factor on the optimal length of a one-tonne monohull.

Returning to the "realistic" boats produced for lower speeds, with Fnv<3.25, as the
"design speed" increases from zero in that range, the optimum length L shown in
Figure 2(c) increases to a maximum of about 22 at a Fnv value of about 1.8 before
decreasing slowly as the speed increases further. This volumetric Froude number of
1.8 corresponds to a conventional (actual length-based) Froude number of 0.38, or a
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speed of 11 knots for a one-tonne vessel. At speeds below this value, the usual very
dramatic large rise in wave resistance occurs as the length-based Froude number
increases. Not surprisingly, longer boats are then preferred as the speed rises.

This trend cannot continue for ever. Eventually, the optimal boatlength reaches a
maximum, and further increases in speed can no longer be met by increasing length
to keep operating well below the wave resistance main peak. Instead, the length-
based Froude number passes (quite rapidly) through the value where wave
resistance is maximal, but the proportion of wave resistance is nevertheless kept
sufficiently low to achieve an optimal design because of the large boatlength.
Eventually as the speed increases further, the optimal boatlength starts to decrease
again, since we are now operating at a length-based Froude number above the main
wave resistance peak. Then the wave resistance decreases with Froude number, and
hence shorter boats have less rather than more wave resistance at any given speed,
and are preferred in the optimisation.

0 “':,‘r;'\“\*‘-‘.‘u'}ﬂ'jf" """"""" e e
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Figure 2(d): The effect of form factor on the optimal beam-to-draft ratio of a one-tonne
monohull.

When the length is so great, the surface area strongly controls the optimisation, and
to minimise the increase in frictional resistance, semi-circular sections tend to be
preferred. This is clear in Figure 2(d), where it can be seen that the beam-to-draft
ratio B/T stays at a value of roughly 2 for Fnv between 1.0 and 2.5.
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Figure 2(e): The effect of form factor on the optimal length-to-beam ratio of a one-tonne
monohull.

The optimum boats are very slender. Figure 2(e) shows the length-to-beam ratio,
which is very high indeed (reaching a maximum of about 42 at Fnv=1.8) by
conventional ship standards, though not entirely unreasonable for rowing shells.

4.3 Monohull with form drag

Figures 2(a) - 2(e) also show (solid curves) the same monohull calculations as in the
previous section for a one-tonne boat, but here the total resistance now includes
Scragg and Nelson's (1993) form factor.

Figure 2(a) indicates that there is only a quite small increase in the residual total drag
Ct for all speeds, consistent with the fact that the form drag is small, especially for
the present very fine hulls. The greatest impact of form effects on the optimisation
process occurs at very low and very high Fnv. The solid-line Ct curves of Figure 2(a)
are smoother at low Fnv than the dashed curves, and the ultimate decrease in Ct at
high Fnv is no longer as rapid.

Figure 2(b) shows that with form drag included, the proportion of wave resistance
now remains below 10% for all speeds and all displacements. The scatter at low Fnv
is not so pronounced as in the optimisations without form effects. Most important of
all, however, is that there is no longer a sudden discontinuous increase in the
proportion of wave resistance for Fnv>3.25. We have already anticipated this, since
the very short boats that were suggested at high speeds by the optimisation without
form drag are now heavily penalised by their large entrance and exit angles, and fail
in total drag competition with a local minimum corresponding to a longer boat.

Figure 2(c) confirms this point, indicating that the optimum boat stays "long" for all
speeds, with no discontinuity at any high-end speed. Indeed, with the inclusion of
form effects, there is a tendency towards slightly longer optimum boats. The beam-



30 E.O. Tuck and L. Lazauskas

to-draft ratios shown in Figure 2(d) are generally about 10% smaller with form drag
included. For our canoe body, small entrance and exit angles can only be achieved by

reducing the beam, so there is a slight tendency toward non-circular cross-sections,
with B/T<2.

At the intermediate speeds which are of the greatest practical interest, there is only a
small effect of the form factor on all outputs, and the qualitative discussion in the
previous section about transition through the speeds where the wave resistance and
hence the optimum length is maximal applies equally with or without form factor.
Nevertheless, because as we have seen, inclusion of a form factor makes for a
smoother and more realistic optimisation process at all speeds, such a factor is
included in all of the remaining computations presented here.

4.4 Variation in Displacement

To demonstrate the effects of displacement, we optimised boats with D=0.075, 0.1,
0.15,0.2,0.25,0.3,0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 tonnes. The 0.075-tonne boat is
of similar displacement to the lightweight women's single scull class; the one-tonne
boat would correspond to a coxed eight with a very burly crew. For each of the

fourteen displacements, optima were sought at eight volumetric Froude numbers,
Fnv=141.,..,28.

One commonly-used method to rate rowing performance is the U.S. gold medal
standard time over 2000m. For example, standard time over 2,000m. for the
lightweight women's single sculls (D=0.075 tonnes) is 7 min. 42 sec., for the open
men's coxless fours (D=0.4 tonnes) standard time is 5 min. 55 sec., and for the open
men's coxed eights (D=0.9 tonnes) it is 5 min. 29 sec., (Gwadz, M., 1996). Using these
standard times to calculate average boatspeeds, the corresponding volumetric
Froude numbers of the three classes are approximately equal to 2.0, 2.1 and 2.0,
respectively. Thus the range of volumetric Froude numbers we are considering here
extends above and below the standard times for each class of rowing, and the
central value Fnv=2 seems representative of good speeds for a wide range of
displacements.

Since we are not constraining length or draft, the following results also apply to
canoes and kayaks. Of course, the narrow hulls that result from the optimisation
process have low static stability and are probably less suitable for paddling styles. It
is important, however, to know at what cost in total resistance the necessary extra
stability can be achieved.

To reduce computation time, 33 waterlines, 33 stations, and 240 intervals of theta
were used in calculations. Length was constrained to lie in the range
0.5m < L < 30.0m; draft was limited to the range 0.0lm < T < 2.0m. For the
optimisations, we used a small population size of 32. Each of the 112 design
problems (14 displacements, 8 speeds) was run with three different initial
populations, and a minimum of 5,000 resistance evaluations were performed during
each run. Optimisations were performed on 14 Sun workstations (some IPX models,
some Sparc4s, some Sparc 10s) over four nights.

In all cases convergence was quite fast due to the small number of design
parameters, and because the wave resistance varies smoothly with length-based
Froude number greater than about 0.35. In hindsight, the number of evaluations
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performed seems quite excessive for this set of problems. In nearly all cases, the
eventual optimum was found (to at least the 4th decimal place in Ct) during the first
run. Subsequent runs made little difference to either the optimum total resistance, or
the parameters producing that optimum resistance. Of course, if we had used
smaller search domains, for example small regions surrounding the dimensions of
existing shells, we could have used hill-climbing operators alone. However, we are
looking for unusual hullforms, ones that we as humans might not normally conceive
of. If the search domain is too small, we could miss, for example, the low-speed and
high-speed discontinuities discussed previously.

Figures 3(a) and 3(b) show the variation with displacement of the total resistance
coefficient and length respectively. Results for the one-tonne boats are the same as in
figures 2(a) and 2(c). Note that the proportionality constant relating actual speed to
volumetric Froude number varies as the one-sixth power of displacement.
Specifically, the actual speed at the central Froude number Fnv=2.0 is 7.9 knots for a
0.075-tonne vessel, 10.8 knots for a 0.5-tonne vessel, and 12.2 knots for a 1.0-tonne
vessel. Actual speeds at other Froude numbers are obtained by scaling these central
speeds.

We do not present graphs of Cw/Ct, beam-to-draft ratio, or length-to-beam ratio to
save space, and also because they are very similar to those of the one-tonne results in
figures 2(b), 2(d) and 2(e).

0.029 -
0.028 A

0.027 +
0.026 T
0.025 1
0.024 1
0.023 N
0.022 +

0.021 } } } } } } i

Figure 3(a): The effect of displacement on the optimal total resistance of a monohull.

In figure 3(a) the curves at the top of the graph are for 0.075-tonne boats; the curves
at the bottom are for the one-tonne shells.
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Figure 3(b): The effect of displacement on the optimal length of a monohull.

Smaller boats have larger drag coefficient Ct because they are shorter, their Reynolds
numbers are smaller, and consequently the skin friction coefficient is larger. Of

course the actual total drag Rt is much larger for larger boats, once we multiply Ct by
(L*)A2=DA(2/3).

In this range of speeds, the dependence of the results on displacement is quite
smooth and predictable by interpolation within the curves presented here.

4.5 Comparison with Existing Eight-Oared Shells

In their study, Scragg and Nelson (1993) compared predictions of total resistance for
three existing competitive eight-oared shells — the Vespoli A, Vespoli B, and Janocek
models. At a speed of 11.7 knots and a nominal displacement of D=0.871 tonnes, they
estimated that the three shells each had a total resistance coefficient of approximately
Ct=0.0248. Using figures 3(a) and 3(b) above as simple design charts, we see that at
Fnv=2.0, our optimum shell for D=0.871 has Ct approximately equal to 0.0235. This
represents a 5% improvement over the hulls in Scragg and Nelson's study. Figure
3(b) shows that the optimum length is about 18.5m. The beam of this optimal shell is
0.45 metres, which is somewhat lower than conventional.

To provide a more realistic comparison, we repeated the optimisation of a 0.871-
tonne boat at a speed of 11.7 knots, but now with the beam constrained to B=0.57m.,
roughly the same as that of the shells considered by Scragg and Nelson. GODZILLA
found that this sub-optimum hull had Ct=0.0243, which still represents a 2%
improvement over the Ct estimated by Scragg and Nelson for the extant hulls. Our
0.57m-beam shell has L=16.9m. which is about 10% shorter than the above optimum
length of 18.5m. On the other hand, this length compares well with the three existing
shells: the Janocek hull has L=16.3m; the Vespoli A has L=17.0m; the Vespoli B has
L=16.6m. However, the draft for our optimum shell, T=0.216m., is 15.0% greater than
the extant hulls which have drafts of about T=0.187m.
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Scragg and Nelson's experiments with the Vespoli B and other hulls showed
considerable scatter around 11-12 knots and Ct's between 0.0234 and 0.0247 were
reported. The scatter was so considerable in fact, that they concluded (page 98):

"...the empirical approach is less reliable in discerning small differences in
performance than the systematic results obtained from numerical
hydrodynamics."

The present authors take great heart from this!

5. CONCLUSION

We have found optimum boats for minimum total drag over a large range of speeds
and displacements. Results were obtained both with and without form drag
corrections. Although the net contribution of form drag is small, it can nevertheless
be important in determining the optimum. The optimum boats tend to be longer and
have a lower wave resistance relative to viscous resistance than conventional boats.
The genetic algorithm tool GODZILLA has proved useful in searching for the global
minimum in the presence of two or more local minima, and will be essential in
extended work involving multihulled vessels, shape variations and other constraints.
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MODELLING THE ROWING STROKE AND INCREASING ITS EFFICIENCY

Maurice N. Brearley! and Neville J. de Mestre?

Abstract

The forces acting during a complete stroke in a racing shell are modelled
mathematically. The model is then used to derive familiar aspects of boat
behaviour, such as the variation in speed during a stroke. The analysis is
conducted for a typical eight, but would apply equally well to fours and pairs, and
to single, double or quad sculls.

A method is suggested for increasing the efficiency of the stroke and hence
improving race times. It involves storing as elastic potential energy, some of the
kinetic energy of the rowers’ bodies as they near the end of the recovery phase,
instead of requiring the rowers’ legs to do all the work needed to annihilate their
motion. During the early part of the power stroke the stored energy is used to help
in accelerating the rowers’ bodies.

1. INTRODUCTION

An investigation is made of the effects of the forces which operate during the rowing
of racing shells. The analysis will apply equally well to eights, fours, pairs and
double or quad sculls, and even (with obvious verbal changes) to single sculls.

The rowing stroke is divided into two parts: the power stroke, during which the
blades of the oars are in the water and the rowers pull on the oar handles and
straighten their legs, thus moving their bodies towards the bow on their sliding seats;
and the recovery phase, during which the blades are clear of the water and the
rowers move stern-wards by bending their legs and leaning forward.

The main resistance to the forward motion of a boat is provided by the drag of the
water. Air resistance plays a much smaller part, in general, and is neglected in the
analysis. A formula for the drag on the hull of a typical racing eight is obtained from
experimental data in a Report of the U.K National Physical Laboratory (Wellicome
[1]), and this enables numerical results to be obtained for a typical eight. Boat-flexing,
pitching and “fish-tailing” are all neglected, their influence being negligible
compared with that of the forces considered in the analysis.

Assumptions are made in later Sections about the variation of the forces on the oar
handles and of the rowers’ displacements on their slides. To our knowledge only one
other author (Millward [2]) has endeavoured to construct a mathematical model of
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rowing. His model ignored any movement of the rowers within the boat. The test of
any model is how well its predictions correspond to observed results in a practical
situation; in Section 5 such things as boat velocity and race duration are predicted by
our model for an eight in a 2000 m race. Graphs are obtained of the variation in boat
velocity while accelerating from a stationary start and during a full stroke after top
speed has been reached.

In Section 6 an idea for improving the performance of a rowing crew will be
examined. It involves converting to elastic potential energy some of the kinetic
energy possessed by the rowers as they move on their slides towards the catch
position. This is achieved by tethering the seats by shock cords (elastic ropes) to
anchor points in the boat.

2. NOTATION AND CONVENTIONS

The water on which the boat travels may, of course, be regarded as a fixed reference
frame.

A modern racing oar has a mass of only about 2 kg, so the masses of the oars may
reasonably be neglected in the analysis. Let

m = mass of boat (including the cox, if present),
M = combined mass of rowers,

t = time from start of power stroke,

v = velocity of boat at time t,

f = dv/dt = acceleration of boat at time t,

T, = duration of power stroke,

1T, = duration of recovery phase,

t'=t— 1, = time from start of recovery phase,
D = drag of the water on the hull.

In the Appendix it will be shown that for a typical racing-eight hull,

D = a + bv + cv?, 1
where a, b, ¢, are constants which are calculable from data in Wellicome [1]. It will be
assumed that this formula remains valid over the whole range of boat velocities
considered in this analysis of rowing.

It is important to distinguish the directions of the forces which operate. The word
“forward” will be taken to mean the direction in which the boat is moving, and

“backward” to mean the opposite direction.

The word “rowers” will be used instead of the traditional (and sex-discriminatory!)
word “oarsmen”.

3. THE POWER STROKE

This occurs during the time interval 0 < t < 1,.
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The feet of the rowers are strapped to footrests fixed to the hull. During the power
stroke the rowers straighten their legs and exert a combined backward force, Q say,
on the footrests and hence on the boat. By Newton’s Third Law, an equal and
opposite force is exerted on the rowers by the footrests. These forces are depicted in
Figure 1 for a single oar, but the forces shown are the combined values for all rowers
in the boat.
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Figure 1. Plan view of the power-stroke situation.

In Figure 1, forces acting on the boat itself are drawn with full arrows; others are
shown dotted. Since force components perpendicular to the direction of travel will
cancel for each pair of oars on opposite sides of the boat, it is sufficient to consider
only components parallel to the direction of travel.

The rowers exert a combined forward force R on the oars, and experience themselves
an equal and opposite backward force. Not being forces on the boat, both of these
forces are shown dotted in Figure 1.

The water exerts forces on the blades of the oars, the combined component in the
forward direction being denoted by S. It is shown dotted in the figure since it does
not act on the boat. It may be considered as acting at the centre of each blade. It has
been observed by us that the blades move very little through the water during the
power stroke; in this model they are regarded as fixed fulcrums of the levers formed
by the oars. A case can be made for allowing for some small motion of the blades
through the water by taking the fulcrum of each oar to be inboard of the blade itself.
Such a change would affect some of the numerical work in Section 5 but would not
alter the basic form of the mathematical model.

The oars exert forces on the boat at the swivels, their combined components in the
forward direction being denoted by P in Figure 1. The mechanical advantage of the
oar-lever system ensures that P > Q. It is the combined difference P — Q for all oars
that drives the boat forward against the drag D of the water during each power
stroke.

As depicted in Figure 1, let

¢ = oar length from centre of grip to centre of blade,
h = distance from centre of grip to swivel.
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Because the mass of the oars is being neglected, taking moments about the centre of
the blade gives

R¢ = P(£-h).
It follows that
P-R = (h/¢)P, )

and this relationship evidently holds throughout the power stroke, irrespective of the
angle which the oars make with the boat.

Oar flexing is ignored in this approach, even though it may modify slightly the
values of P and /. Its effect will be over-ridden by the necessary assumption of a
particular maximum value for P which will be made when a numerical example is
considered in Section 5.

Relative to the boat, the rowers begin and end their forward motion with zero
velocity, and attain smoothly a maximum velocity at about the centre of their travel.
This relative motion is such that it may reasonably be taken as half of a cycle of
simple harmonic motion (SHM). This suggests writing the relative forward
displacement of the rowers from the central point of their travel during 0 < t < 1,
as

X, = —a,cosnt, 3)
where the forward direction of the boat is taken as positive and

a, = the amplitude averaged over all rowers of the SHM of the centres of mass
of the rowers’ bodies,

n, = w/T, = the circular frequency of the SHM.

The forward acceleration of the rowers relative to the boat is X,, and relative to the
water is X, +f. The equation of motion of the rowers in the forward direction is
therefore

Q-R = M(%,+f) = M(nja, cosn,t + dv/dt).
The equation of motion of the boat is
P-Q-D = m dv/dt.
Adding these two equations and using (2) produces
(m+M)dv/dt = (h/¢)P - Mnfa, cosn;t - D.

The force P begins and ends with small magnitudes in 0 < t < 7, and attains
smoothly a maximum near the centre of this interval (Mason et al [3]). The salient
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features of P will be adequately represented in a mathematically tractable way by
taking

(h/f)P = P_sinngt, 4)
where n, = 1i/1, as before, and P, is the maximum value of (h/¢)P.
The previous differential equation then becomes, by virtue of (1),
(m+M)dv/dt = P, sinn;t— Mnla, cosnt—a-bv-cv’.
This power stroke equation may also be written as
dv/dt = K;sinn;t + K, cosn;t+A +Bv+Cv?, (5)
where 0 < t < 7, n, =n/7,,and
K, = P_/(m+M), K, = -Mnla,/(m+M), (6a,b)
A = —a/(m+M), B = -b/(m+M), C = —¢/(m+M). (7a,b,c)
4. THE RECOVERY PHASE
This occurs during the time interval 1, <t<71,+1,, 0or 0<t' < 1, wheret' =t- 1,.
During the recovery the rowers bend their legs to draw themselves on their sliding
seats towards the stern of the boat. The combined force F on the rowers which
produces their motion is shown dotted in Figure 2, and the equal and opposite force

F on the footrests is shown as a full arrow because it is a force on the boat. Just as for
Figure 1, it is enough to illustrate the situation for a single oar.

Forward
direction
_’
Drag D
-~ ———a Vel.v

h F*—E@ —> Acen. f

Figure 2. Plan view of the recovery-phase situation.

During the first half of the recovery phase the directions of the forces F are as shown
in Figure 2, and the boat accelerates in the forward direction. For the second half of
the recovery the forces F and the boat's acceleration reverse their directions, and this
will shortly be seen analytically.
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During the recovery phase the positions occupied by the rowers' bodies are very
similar to those during the power stroke, but assumed of course in the opposite
direction and over a different time span t,. The relative forward displacement of the
rowers from the central point of their travel during 0 <t' < 1, may thus be taken as

X, = a, cos n,t, 8)
where the amplitude a, is the same as in equation (3), and
n, = m/1, = the circular frequency of the SHM.

The forward acceleration of the rowers relative to the boat is X,, and relative to the
water is X, + f. The forward equation of motion of the rowers is therefore

—F=M(X,+f) = M(-nja, cosn,t' + dv/dt').
The equation of motion of the boat is
F-D=m dv/dt'.
On adding the last two equations and using (1) it is seen that
(m+M) dv/dt' = M nja, cos n,t' — a—bv-cv’.

Dropping the dash from t' (for convenience only), this recovery phase equation may
also be written as

dv/dt = K, cosn,t + A+Bv+Cv?, 9
where 0<t<1,, n, =7/1,,and
K, = Mnja,/(m+M), (10)

and A, B, C are given by (7 a,b,c).

5. A PARTICULAR NUMERICAL EXAMPLE
To apply the foregoing theory to a particular case, a racing eight will be considered.

The constants a, b, ¢ in equation (1) are known for such a boat from work done in the
Appendix. It is shown there that the drag on the hull (in newtons) is given by

D = 24.93 - 11.22v + 13.05v?,

where the boat speed v is in m/s. The values of the constants in (1) in SI units are
therefore

a=24.93, b=-11.22, ¢ =13.05.

A video of an Australian Olympic eight in action over a 2000-metre course enabled
estimates to be made of the power-stroke and recovery durations, and it was decided
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to take 1,=0.7s, 1, =0.9s. Of course in a race the durations would vary, but for
purposes of calculation they are taken as constant. The time for a complete stroke is
1.6 s, which corresponds to a stroke rate of 37.5 per minute.

The amplitude a; of the motion of the centres of mass of the rowers” bodies is
estimated to be 0.36 m.

The mass of the boat plus cox, and the combined masses of the eight rowers are taken
to be respectively m = 146 kg, M = 680 kg.

The component in the forward direction of the maximum force exerted by each
rower during the power stroke must be guessed, and is assumed to be
100 Ib wt = 45.36 kg wt = 444.5 N which lies within the range obtained by

Mason et al [3]. For all eight rowers combined, the maximum value of the force R in
Figure 1 is then 3556 N. Equations (2) and (4) show that

P, = [(¢/h)-1]" x maxR,

where ¢ and h are the lengths depicted in Figure 1. If the estimates
£ =3.385m and h = 1.02 m are used, then

P_ = 0.4313 x 3556 = 1534 N,
and this is the value that is used in (6a) to calculate the value of the constant K.
In the power-stroke differential equation
dv/dt = K;sinn;t + K, cosn;t+A +Bv+Cv?, 5)

the relevant domain is 0 < t < 0.7, and n, = w/0.7 rad/s. The values of the other
constants in (6 a,b) and (7 a,b,c,) are found to be (in S.I. units)

K, = 18577, K, = —-5.9695,
A = -0.030182, B = 0.013584, C = -0.015799.
In the recovery phase equation
dv/dt = K, cosn,t + A + Bv + Cv?, )

the domain is 0 <t < 0.9, and n, = w/0.9 rad/s. The values of A, B, C are as listed
above, and K, = 3.6112.

Equations (5) and (9) are not very amenable to analytical solution. A computer was
therefore used to solve them numerically, using the Runge-Kutta method. To
investigate the acceleration of the boat from a stationary start it was assumed that (5)
and (9) applied from the outset, and the following iterative procedure was used.

An initial velocity of v=v, =0 was used, and (5) was solved to find the velocity
v=v, at t = 0.7, the end of the first power-stroke. This value v,, was used as a
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starting value with the recovery equation (9), which was then solved numerically to
yield the velocity v=v,, att = 0.9, the end of the first complete stroke. The whole
procedure was then repeated, using in (5) the new initial velocity v, =v, and
arriving at a new value for v,, at the end of the second complete stroke. The iteration
was continued until the value v, was repeated to sufficient accuracy after
successive strokes, showing that the boat had reached a “steady state”.

The distance traveled by the boat during each stroke was calculated by numerical
integration of the velocity, from which the mean boat velocity Vv during each stroke
was found by dividing the distance by the stroke duration of 1.6 seconds. Because the
velocity varies greatly during a stroke, V is a more suitable quantity to plot as a
function of time than the instantaneous velocity. Figure 3 was formed by drawing a
smooth curve through the points (t, ¥), where t is the time from the start to the
middle of the stroke to which the V value refers.

v
(m/s)
7 v T —

6L

5k

4 8 12 16 20 28 28 32 3% 40
t(s)
Figure 3. Mean boat velocity V versus time t during acceleration.

Figure 3 shows that the boat reaches a constant mean speed after about 40 seconds,
which corresponds to 25 complete strokes.

The computer solution was also used to find the boat velocity at 0.1 second intervals
throughout a complete stroke after the “steady state” had been achieved. Figure 4
was formed by drawing a smooth curve through the resulting points (t, v).

v
(m/s)

0 02 04 06 08 10 12 14 16
t(s)

Figure 4. Boat velocity v during one stroke in the “steady state” situation.
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Figure 4 shows that the boat speed drops to below 4.6 m/s near the middle of the
power stroke, and that it reaches nearly 7 m/s near the middle of the recovery phase.
This speed variation is mainly the result of the forces exerted by the rowers on their
footrests; during the power stroke they are driving the boat back against its
predominantly forward motion, and during the recovery phase they are dragging the
boat forward and augmenting its velocity. From a dynamical viewpoint one would
say that there is an exchange of momentum between the rowers and the boat, with
the motion of their combined centre of mass being much more uniform than the
motion of either component.

The distance traveled by the boat during one “steady state” stroke was also
calculated and found to be 9.488 m, which corresponds to a mean velocity Vv of 5.93
m/s.

The time taken for the eight to row the 2000 m course can now be calculated. During
the acceleration phase of 40 seconds duration, the distance travelled by the boat was
found from the computer solution to be 200.7 m. The time taken to cover the
remaining 1799.3 m at the mean “steady” speed of 5.93 m/s is 303 s, making the total
race time 5 m 43 s. This would be a reasonable time for an Olympic eight, and a very
good time for a club crew. It suggests that the estimate made for the maximum force
exerted by each rower was a reasonable one.

The principles used in the foregoing example of a racing eight would apply equally
well to fours and pairs, and even to double, quad and single sculls, provided the
obvious modifications were made for the numbers of rowers and oars involved, and
for the mass and drag of the hull.

6. AN ENERGY STORING S YSTEM

An idea for improving the performance of rowers is to have each seat connected to a
fixed point nearer the bow of the boat by a length of shock cord (elastic rope). The
length of the shock cord is to be such that it comes under tension when the seat is at
the midpoint of its motion during the recovery stroke. If

2d = total distance moved by a seat on its slides,
T = maximum tension in the shock cord,

the potential energy stored in the shock cord at the end of the recovery stroke is 1Td
on the assumption that the cord obeys Hooke’s Law.

For an eight, the total energy E so stored in all eight cords would be 4Td. Because the
shock cords help to bring the rowers’ bodies to relative rest in the boat, the rowers’
legs are spared an amount E of the work they normally do during the second half of
each recovery.

During the first half of the power stroke the tension in the shock cord helps each
rowers’ legs to straighten. Therefore in an eight the rowers’ legs would again be
spared an amount E of work. The total saving of work for the legs of all eight rowers
in one stroke would be

OF = 8Td. (11)
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It is reasonable to expect that the work saved by such an arrangement of shock cords
would be available to increase the effort expended by the rowers in driving the boat
forward. On this assumption an estimate may now be made of the expected
improvement in the performance of an eight in a race, using the data of the particular
example discussed in Section 5.

Experiments were conducted with experienced rowers on a rowing ergometer, the
seat being tethered by polyamide shock cord of 3mm diameter. It was found that
four strands of this cord produced a tension of 10 kg wt (= 98 N) at the end of the
recovery phase, and that this was the greatest load with which the rowers felt
comfortable. Measurements showed that a typical value for the seat travel 2d was
0.68m. The total work saved per stroke is shown by (11) to be

2E =8 x98 x 0.34 =267 Nm.

The rowing stroke is not 100 per cent efficient for several reasons, including blade
slip and the angle of inclination of the oars. It would be difficult to calculate the
efficiency accurately, and for the purpose of determining the improvement in
performance to be expected from the tethered seat system it will be sufficient to use
an estimate. If the efficiency is taken to be 70 per cent, the work W per stroke saved
by using tethered seats would be

W1 =267 x 0.7 =187 Nm.
The useful work per stroke, W, say, is that done against the water resistance D
during the duration of the stroke. It is given by

1.6
W, = [Dvdt (12)
0

where in Section 5 it was found that
D =2493-11.22v +13.05v2  (Newtons).

The boat velocity v throughout the stroke in the “steady state” situation is as shown
in Figure 4.

The value of W, may be found from (12) by using Simpson’s 1/3 Rule at time
increments of 0.1 seconds. It is found that W, = 4220 Nm.

The ratio of W; to W, in the “steady state” is
W, /W, =187/4220 = 0.0443.

In Section 5 the duration of a 2000 metre race for the particular eight considered was
found to be 5m 43s. The improvement in this time that would result from using

tethered seats would be of the order of 343 x 0.0443 = 15.2s. At the mean boat speed
of 5.93 m/s found in Section 5 this would correspond to an improvement of 90.1 m,
or about 5 boat lengths.
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7. CONCLUSIONS

A mathematical model was set up to represent the rowing stroke in a racing shell. An
eight was used for the numerical work, but the principles involved apply also to
fours and pairs and to single, double and quad sculls. The validity of the model is
verified by its success in predicting quantitatively the familiar variation in boat speed
during a stroke. The reason for this speed variation is revealed precisely by the
model.

The idea was introduced of tethering each seat by shock cord to a fixed point of the
hull behind the rower. The arrangement enabled energy to be stored in the cords,
thus saving the legs of the rowers some work during both the recovery and power
strokes. Calculations suggest that the system could improve the performance of an
eight by as much as five boat lengths in a 2000m race.

Even allowing for the doubt about the value used for the efficiency of the rowing
stroke, and for the assumption that any work saved will appear as useful work to
propel the boat, it seems likely that a significant improvement in race performance
could be expected from the tethered seat arrangement. A practical test under race
conditions is obviously indicated.
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APPENDIX

Wellicome [1] describes resistance measurements made on racing eight hulls in a
water tank at the Ship Division of the National Physical Laboratory. The results of

one set of experiments are shown in Figure 5, reproduced unchanged from the above
Reference.

HULL [II DONORATICO IOI9
RESISTANCE EXPERIMENT RESULTS

—)

" senn” (uned

Figure 5. Hull resistance in Ib wt versus speed in ft/sec for a typical racing eight hull
(reproduced from Wellicome (1967) by permission of British Maritime Technology Limited).

The method of least squares was used to fit a quadratic velocity equation to the drag
curve of Figure 5. In terms of the units used in that Figure the fitted equation is

D = 5.6027 - 0.7685V + 0.2725 V?> (Ib wt),
where V is the boat speed in ft/s. In S.I. units this is
D = 2493 - 11.22 v + 13.05v? (N),

where v is in m/s. This is the origin of the equation stated near the beginning of
Section 5.
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AN ANALYSIS OF WORLD RECORDS FOR RACES RUN ENTIRELY IN LANES

R Hugh Morton!

Abstract

A compilation of world records for races run entirely in lanes has recently been
published. These are analysed for the effects of track curvature, gender differences
and the imposition of hurdles. There is of course strong evidence that males run
faster than females and that hurdles slow runners down. However, there is little
evidence that the less curved lanes can be traversed faster. Since the central lanes
are not necessarily the fastest either, the requirement that the faster runners be
seeded to the central lanes, seems unnecessary.

1. INTRODUCTION

The 200m, 400m and 400m hurdles (400H) for both men and women are run entirely
in lanes. It is natural to ask what effect, if any, lane allocation may have on the times
taken to run these distances. Common sense suggests that the innermost lanes are
more affected by track curvature such that slower times would be expected; and vice
versa. On the other hand, the innermost lanes enjoy the visual and psychological
stimulus of seeing one’s competitors, apparently in front due to the staggered start,
thereby urging a faster time; and vice versa also.

Naturally one must also ask what gender differences exist, and what effect the
imposition of hurdles may have. These effects seem intuitively predictable. Of more
interest are interaction effects; such as whether the gender difference is greater or
lesser for hurdle versus flat events (particularly knowing that womens hurdles are
lower than mens). There is little published scientific information available on these
questions, but the recent publication by Brickner [3] of a compilation of the best ever
recorded times in each of the (usually eight) lanes in the six events mentioned,
provides us with some high quality data to answer them.

2. STUDIES OF RUNNING ON CURVED TRACKS

Jain [5] noted that times for 200m races run on straight track (which used to be
officially recognised years ago) are consistently lower than those run on curved
tracks. The average difference is about 0.4 sec. By assuming that the difference in
times taken to run a given distance on a semi-circular path and on a straight-path is
inversely proportional to the radius of the curve, Jain shows that on a standard 200m
track the advantage of the outer lane 8 over the inner lane 1 due to lesser curvature,
is about 0.07 sec. At world class 200m speeds, this time converts to a distance

1Department of Statistics, Massey University, Palmerston North, New Zealand
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advantage of a little under one metre. Jain recognises this as a approximation, and
argues that for several reasons, it is probably an underestimation.

Alexandrov and Lucht [1] have considered the physics of sprinting. An equation of
motion is derived assuming that (a) the runner has available a propulsive force F per
unit mass, taken as constant for the duration of the race; (b) there exists a resistive
force opposing the direction of motion, taken as proportional to the velocity of

motion v;(c) in order to keep running within the allocated lane, 100m along the arc of
a semicircle of radius r, the propulsive force must supply a component giving rise to

a centripetal acceleration of magnitude v2/r. Using world class 200m speeds on a
standard track, Alexandrov and Lucht show that the advantage of lane 8 over lane 1
is about 0.12 sec or a distance of about 1.3 metres.

In a similar theoretical paper, Green [4] shows that the time differences obey an
inverse square law and that Jain’s estimates are indeed low. An advantage of about
0.123 sec is estimated. Likewise, Behncke [2] estimates an advantage of about 0.106
sec.

These latter estimates are in good agreement. For less capable athletes the time
advantage may be larger, but at slower speeds, the distance advantage is probably
unchanged. Since most such sprints are won or lost by very close margins, these
effects seem quite significant.

3. DATA ON WORLD RECORDS FOR LANES

I have adopted a multiple regression approach to analyse these data on records times
compiled by Brickner [2]. Time (T, sec) is taken as the dependent variable. As
explanatory variables, both linear and quadratic effects of lane allocation (A) were
investigated, and indicator variables utilised to account for distance (D), gender (G),
and hurdle (H) effects. Because of collinearity, lane numbers 1 to 8 were scaled to
have a mean of zero and range -1 to +1; L = (A - 4.5)/3.5. All first order interactions
between these explanatory variables were included in a first fitting, except for DH
which is confounded with H.

Using a backward elimination procedure not all these terms were significant, but
retaining all terms significant at p<0.05 yielded a final fitted equation.

T =21.71 + 26.75D + 4.52H - 1.87G - 2.64DG - 1.48HG + 0.37DL - 0.30HL - 0.18GL + 0.84HL?2

with R2 = 0.9997 (adjusted R2 = 0.9996). The standard error of estimation was
s = +0.27sec.

4. DISCUSSION

The curvature effect, as predicted by the mathematicians and physicists where lane 8
should be fastest is noticeably absent! It holds, as a linear progression from lane 1 to
lane 8, only for the mens 200m event. The time advantage estimated from these data
is about 0.37 sec; three times the size of the ‘theoretical” estimate. Clearly this needs
further investigation. Curiously, the very opposite lane effect, where lane 1 is found
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to be the fastest, hold for both the mens and womens 400m flat events. The estimated
advantage of lane 1 over lane 8 is about 0.37 sec for men and 0.75 sec for women.

One reason which may partially explain the absence of the expected curvature effect,
is the visual psychological stimulus already mentioned. More likely perhaps, may be
the seeding rules for lane allocation employed in championship meetings, where
runners who have performed best most recently are allocated to the central lanes. In
New Zealand for example, seeds 1-4 are randomly allocated lanes 3-6, and seeds 5-8
are randomly allocated to lanes 1, 2, 7 and 8. This practice however would lead us to
expect faster times in the central lanes, and record times to show a U-shape when
plotted against lane number. While there is an overall tendency towards this on
average, it is statistically evident only in the 400H events for both men and women.
Lanes 4 and 5 are the fastest and lanes 1 and 8 the slowest, with an estimated
difference of about 0.82 sec for both men and women. While the proponents of lane
allocation based on seeding may be quick to place importance on this latter result, it
is worth noting that most of the 400H lane records for men have been established by
the same individual, Edwin Moses.

The remaining race, the womens 200m shows no evidence of lane effects of any sort.
The estimated time for any lane is the same, 21.77 sec. To this basic central lane time
for women, we can add the following effects estimated from the record data: if
extending the distance to 400m, add 26.75 sec; if imposing hurdles at 400m add a
further 4.52 sec. For men over 200m, subtract 1.87 sec; over 400m then add 24.11 sec;
while if imposing hurdles at 400m add a further 3.04 sec. The following table gives
these fitted values:

Table 1: Fitted times for central lane world records

200m 400m 400H
Women 21.71 48.46 52.98
Men 19.84 43.95 46.99

Interactions are clearly present here. For example, the gender difference at 400m
(men faster by 4.51 sec, refer Table 1) is more than twice the effect at 200m (1.87 sec).
Perhaps the higher physical strength of men applicable during the acceleration phase
which is absent during the second half of a 400m race may be one explanation. Also,
even though hurdles for women are lower in height than for men, their imposition at
400 metres penalises women both absolutely more (by 4.52 sec) than it does men
(3.04 sec), and relatively more (8.53% versus 6.47%).

5. CONCLUSION

Apart from the obvious and expected effects of gender, distance and the imposition
of hurdles, the world record data for the six lane affected races show no consistent
pattern. Thus, despite the gross averages suggesting that lane allocation on the basis
of seeding may produce faster times in the central lanes, when one takes into account
gender, distance and hurdle effects, the evidence is at best rather weak. Also, if one
takes each race in isolation, there is a danger of getting the wrong impression by
losing sight of the effects of all information contained in the data. Whether athletic
authorities should consider changing the conventional method of lane allocation is of
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course quite a different proposition, for it has tradition and anecdotal evidence on its
side.
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A FAIR METHOD FOR RESETTING THE TARGET IN INTERRUPTED
ONE-DAY CRICKET MATCHES

Frank Duckworth!

Tony Lewis?

Abstract

One-day cricket has a history of injustices to one of the teams when, due to a
sustained interruption in play, the target of the team batting second is reset. All
methods that have been used so far fail to produce fair targets in all circumstances
especially when interruptions occur after the start of the second innings. Methods
that are currently in use, or that have been tried and abandoned, are described,
together with their limitations.

This paper describes a method that produces fair targets in all known situations
including single and multiple interruptions to either one or both innings. Unlike
other methods it makes due allowance for the stage of the innings when the overs
are lost and for the number of wickets that have fallen at the time. With this
method an interruption to play does not award an advantage to either team.

We present a model for the average runs that are obtained from the two resources
of overs and wickets in combination, and modify this to give the proportion of the
run-scoring resources of an innings remaining at any stage of the innings. The
values for the parameters of the model are obtained using relevant data from one-
day internationals. We show how the relationship obtained enables the target
score in an interrupted match to be reduced. This is done by using the proportion
that is lost of the run-scoring resources of the innings, a correction which is equally
fair to both sides.

Through the use of several examples we demonstrate how the method produces
fair targets in practical and hypothetical situations in contrast to existing methods
which are shown to yield unfair targets in many circumstances.

This method has been presented to the chief executives of member countries of the
International Cricket Council. We believe that the method will be tested soon in
one-day international series.

1. INTRODUCTION

One-day cricket began in the United Kingdom in the 1960s. It has been played in
many formats with 40, 55, and 65, later reduced to 60, overs per side. The game has
since spread around the world, so that now there are many one-day competitions

IMoonrakers, Taits Hill, Stinchcombe, Gloucestershire, GL11 6PS, UK.
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played not only within cricket playing countries but also between them. Every four
years, the major countries and some minor ones, compete in a World Cup.

These games are clearly intended to be completed within one calendar day.
Sometimes the rules of the competition allow for a second or even a third day in
which to complete the game if bad weather should interrupt play for any substantial
length of time.

Some competitions, however, such as the English Sunday League (40 overs per
innings) and some games in the World Cups, do not allow for extensions in the time
allocated. If playing time has to be reduced, then either one or both teams receives
fewer than the maximum number of overs allowed per team.

From the beginning of one-day cricket, a mechanism has been needed by which to
adjust the target score of the team batting second so that a result can be achieved in
one day when overs have been lost. The length of innings for one-day internationals
(ODIs) has been standardised (at 50 overs per side, Wisden [1]) but the mechanism
by which the target score is reset has not. Various methods have been tried, with
differing philosophies and levels of complexity.

2. REVIEW OF EXISTING METHODS

There follows a description of methods that have been used so far in one-day cricket
matches. None of the methods takes account of the stage of the innings at which the
overs have been lost nor is any allowance made for the number of wickets fallen.
Both of these factors have an important bearing on setting a fair target.

Average run-rate (ARR)

This method is currently used in the English Sunday League. The winner is the team
with the higher average run-rate per over for the number of overs each has
separately received. Although it is a method with a simple calculation, its major
problem is that it tends (but not always) to favour the team batting second. For
example, Team 1 scored 250 runs in 50 overs, an average run-rate of 5.0 per over. If
Team 2 receives only 25 overs then, at 5.0 per over, the target to beat is 125, that is
126 to win. With all ten wickets available in half the overs batsmen can take more
risks and, consequently, should achieve a higher scoring rate. Therefore a target of
126 in 25 overs, half that of Team 1, is easier to achieve than the 251 in 50 overs.

Most productive overs (MPO)

This method was used in the 1992 World Cup competition in Australia. The target to
beat is determined from the same number of the highest scoring overs of Team 1. For
example, Team 1 scored 250 runs in 50 overs but, perhaps due to some very
economical bowling at one stage of the innings, ten of these overs produced a total of
only five runs. Consequently, the 40 most productive overs produced 245 runs.

If the innings of Team 2 is reduced by ten overs the winning target is 246 in 40 overs
which is a tall order even before the innings has begun. This method tends to favour
strongly the team batting first. It also produces the illogical situation that the
economical bowling that saved runs is the reason that the target is reduced by only a
small amount. In other words, when batting, Team 2 is being penalised because there
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was some good bowling when the team was fielding. A further disadvantage of this
method is the book-work that needs to be undertaken to identify the most
productive overs and their total runs.

We do not agree that the way in which Team 1 achieved its total should be a criterion
in deciding the target of Team 2 in an interrupted game. Just as in an uninterrupted
game, it is only the total that matters and not how it was achieved nor how many
wickets were lost in the process. In the example, the winning target for Team 2 could
be as low as 201 in 40 overs if exactly five runs per over were scored from every over.
It could be as high as 251 in 40 overs if no runs were scored from ten overs. Team 1
was not constrained in the method by which the total of 250 was obtained. Therefore
Team 2's revised target should not in any way be dictated by Team 1's scoring
pattern.

Discounted most productive overs (DMPO)

This method is now used in the Benson & Hedges World Series Cup in Australia.
The total from the most productive overs is discounted by 0.5% for each over lost.
Thus, using the previous example, if ten overs were lost the discounted score to beat

is 245 (1 — 10 x 0.005) = 232.75. The score to win is 233. As with the MPO method
there is the disadvantage of the additional book-work in identifying the most
productive overs and their total runs.

This is still a difficult target for this particular game and it still suffers from the
undesirable feature of using Team 1's scoring pattern. The range of possible winning
targets is from 191 to 238, a spread of 47 runs.

The parabola method (PARAB)

This method is based upon an idea of a young South African, and tries to account for
the deficiencies of the ARR method (do Rego[2]). He produced a table of ‘norms’ (y),
(reproduced in Table 1) for every number of overs (x), from 25 to 50 rounded to the
nearest integer. They were obtained using the parabola y = 7.46x — 0.059x
(sometimes called the ‘parabola formula’) as a model of the ‘diminishing returns’
nature of the average total score as overs in the innings increase. The method finds
the winning target by increasing or decreasing the norm pro rata according to Team
1's performance relative to the norm for its innings. For example, in Table 1, the
norms for 40 and 50 overs are respectively 204 and 226. If Team 1 scored 250 in 50
overs and Team 2 is to receive only 40 overs then the score to beat is

250 x 204 /226 = 225.7, that is, 226 to win.

If Team 2 goes out to bat knowing that it is to receive only 40 overs then the target is
reasonable. But, as with all the methods tried so far, the timing of the lost overs is not
accounted for, nor is the number of wickets lost at the interruption. If the ten overs
are lost late in the innings, or several wickets have fallen, then the effect can be
extremely unjust to one team or the other.

Another major problem, from a mathematical modelling viewpoint, is that a
parabola can not be regarded as an appropriate model since it has a turning point,
here at around 63 overs, and so the estimated average total score would start to
decline as overs available increased beyond 63. Further, the data do Rego used to
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estimate the parameters of the parabola are limited to the average total scores
achieved in English county one-day games (40, 55 and 60 overs per side), and only
one season of these. The model has been applied to international matches without
any statistical justification.

The method was agreed, but not called upon, for the South Africa — England one-day
tournament in Jan/Feb 1996, but it was invoked in the Singer Cup in Singapore,
April 1996. (See the India/Pakistan match, later)

Table 1: Norms and percentage factors for the PARAB and WC96 methods

Overs 25 26 27 28 29 30
PARAB norm 154 158 163 167 171 175
WC96 % factor 66.7 684 702 724 742 760
Overs 31 32 33 34 35 36 37 38 39 40

PARAB norm 175 178 182 185 189 192 195 198 201 204
WC96 % factor 778 79.1 809 822 840 853 86.7 880 893 90.7

Overs 41 42 43 44 45 46 47 48 49 50
PARAB norm 207 209 212 214 216 218 220 222 224 226
WC96 % factor 920 929 942 951 96.0 969 978 98.7 99.6 100

World Cup 1996 method (WC96)

This method is an adaptation of the PARAB method. Each of the norms from 25 to 50
overs was converted into a percentage of the norm for 50 overs, which was taken as
225 rather than 226. Table 1 summarises these percentage factors alongside the
corresponding norms.

For the example above, the score to beat would be 0.907 x 250 = 226.75, which is 227
to win in 40 overs. The major problems are, again, no allowance for the timing of the
lost overs and no allowance at any stage for the number of wickets lost.

The Duckworth/Lewis Method (D/L)
The aims of this approach to the problem are to produce a method which:-
* isindependent of Team 1's scoring pattern

e is fair to both sides — leaves the game as balanced or unbalanced as it was
before the interruption

* iseasy to understand and apply

e  gives a fair target in all circumstances including past controversial situations.
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Basis of the method

(1) The batting side has two resources at its disposal from which to make its total
score. These are overs and wickets.

(2) The number of runs that may be scored from any position depends on both
resources in combination. Clearly, a team with 20 overs to bat with all ten
wickets in hand has a greater run-scoring potential than a team that has lost,
say, eight wickets. The former team has more run-scoring resources at its
disposal; that is, it has more of its innings left than the latter team although both
have the same number of overs left to bat.

(3) The target score is corrected by the proportion of the run-scoring resources of
the innings the second team has been deprived of by the interruption.

(4) Using historical one-day international data a relationship is obtained which
yields a table giving the runs remaining to be scored as a proportion of the total
for all combinations of overs and wickets as the innings progresses.

The model, stage 1

The first stage of the analysis is to derive a model that adequately describes the
average total score Z(u) which is obtained in u overs. An exponential equation is
used to model the diminishing-returns nature of the relationship.

Z(u) = Z,[1 - exp(-bu)] (1)

where Z, is the asymptotic average total score in unlimited overs under one-day
rules, and b is the exponential decay constant.

Our initial research used entirely English county games over seasons 1986 to 1994 to
estimate Z, and b. By using such a wide spread of length of games, including many
shortened games, useful estimates for these parameters were obtained. Using data
collected mainly from Reference [1], estimates were obtained of b=0.0355 and
Z,= 265.6. The estimating process of b and Z, was undertaken by finding the total
least squares weighted deviations of actual average score from expected average
score. Microsoft Excel Solver 5.0 was used to perform the calculations. Appendix I
summarises the data that were used.

During our initial discussions with representatives of the International Cricket
Council (ICC) and the English Test and County Cricket Board (TCCB) it was
suggested that to gain international acceptance for use in future one-day
internationals (ODIs) the database from which our estimates of the parameters are
made should consist entirely of international games.

From Reference [1] and from the Cricinfo database on the Internet, data from over
250 international games from all parts of the world have enabled us to estimate the
parameters as b = 0.0315 and Z, = 283.69. Most of the innings were of the 50-over
variety but some shortened games were included in our analysis as were some
earlier 60 over innings. Some variation in the length of innings would enable
estimates of the asymptote Z, and the decay constant, b, to be obtained. Appendix 1
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summarises the data which were used. Only the data from the average total scores of
the team batting first were used to avoid problems of bias.

It will be noted that our two pairs of estimates differ a little. The asymptote Z, is
higher and the decay constant b is lower for international games. This might be
expected when taking into account the greater expertise of international players
compared with that of English county players. We are satisfied, therefore, that our
estimates for the parameters b and Z, are reasonably reliable even though their
estimation, so far, is based on a fairly narrow spread of length of innings. As more
data become available we will be able to refine our estimates of the parameters.

The model, stage 2

Stage 2 of the modelling process is to introduce a revision of equation (1) for when w
wickets have already been lost but u overs are still left to be received. Clearly the
asymptote will be lower and the decay constant will be higher and both will be
functions of w. The revised model is of the form

Z(uw) = Zo(w)[1 - exp{-b(w)u}] )

Much research has gone into finding sensible yet simple forms for Z,(w) and b(w). A
function F(w) is defined which, in effect, represents the proportion of the asymptotic
average total score obtained with w wickets already lost. Clearly F(0) = 1 and F(w) is
a monotonic decreasing step function.

The function F(w) is used in both Z ,(w) and b(w) to define

Z,(w) =  Z,F(w),and
b(w) =  b/Fw)

Thus, only the single function F(w) is necessary to introduce the effect of wickets into
both the average further score and the exponential decay factor.

The full form of Z(u,w) is thus:
Z(u,w) = Z, F(w) [1 - exp{-bu/F(w)}] )

In order to estimate the values of F(w), w = 1,..,9 it was necessary to use data on the
score at various stages of the innings over a wide range of games. Reference [1] does
not, in the main, provide this level of detail and yet it is usually recorded at televised
matches by the television company's scorer.

Obtaining this data has proved extremely difficult despite some assistance from the
ICC. At the time of writing insufficient data have been obtained to find sensible and
reliable estimates. Consequently, for current purposes, the values of F(w) being used
are:

w 0 1 2 3 4 5 6 7 8 9
F(w) 1 088 076 064 052 040 030 021 0.13 0.06
AFw) 012 012 012 012 012 010 0.09 0.08 0.07 0.06
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These values for F(w) summarise the concept that, on average, each of the
partnerships for the first five wickets accounts for 12% of the asymptotic average
total score. The partnerships for the last five wickets would, on average, contribute
respectively, 10%, 9%, 8%, 7% and 6% with unlimited overs to bat.

Figure 1 shows the nature of the family of curves described by equation (3)

Average runs obtained, Z(u,w), for overs left (u) and wickets lost (w)

300 1

250 +

200 +

—w=0
150 +

100 +

Average runs obtained Z(u w)

50 +

0 10 20 30 40 50 60

Overs available (u)

Figure 1: Graph of the average runs obtained in u overs with w wickets lost.
From equation (3) we obtain dZ/du = b Z, exp {-bu/F(w)}.
The function Z(u,w) has the properties that:

(i) LimZ(uw)asu — oo

Z, F(w), proportional to F(w)
(ii) LimdZ/duasu—>o = 0

(ili) 0Z/duatu=0 = bZ, independent of w
=~ 1.5 runs per ball

These properties are consistent with what is expected in one-day cricket and
consequently give confidence that our model is a sensible representation of the
average further runs that may be scored.

Conversion to proportions

The function Z(u,w) gives the average number of further runs that are scored when u
overs are left and w wickets have been lost. Calculating the average number of runs
lost by an interruption and adjusting the target score can be undertaken using this
function. Recognising that there are some advantages in the simplicity of the WC96
method, we convert the average runs obtained, Z(u,w), into proportions of the
50-over norm.



58 F. Duckworth and T. Lewis

The D/L norm for 50 overs is Z(50,0) and so a proportion P(u,w) is defined by
P(u,w) = Z(u,w)/Z(50,0) (4)

The function can be interpreted as representing the proportion of the combined resources
of the innings remaining when u overs are left and w wickets have been lost. Appendix 2
tabulates this function as a percentage, for u = 50,...,0 and w =0,...,9.

The advantage of simplicity for 50-over games, however, is at the expense of the
complication of adjusting these proportions if the first innings lasts less than 50
overs. A multiplying factor is then necessary for each alternative innings length
below 50 overs to rebase the starting point at 100%. If the method were to be used in
the English Sunday League, a separate table for 40 overs would be produced.

Resetting the target

Team 1 has scored T runs in its allocation of 50 overs. The number of wickets that has
been lost is irrelevant. Team 2 begins its reply but a stoppage occurs with u; overs
left and w wickets lost. Play is resumed with u, overs left (u, < u;) but still with w
wickets lost.

Team 2 has been deprived of u;-u, of its overs resource and so the target score to beat
should be adjusted to account for this loss at the stage of the innings it occurred.

The proportion of the run-scoring resources of the innings lost in those u; —u, overs
is P(u;,w) — P(u,,w) and so Team 2 has had available to it the proportion of the run-
scoring resources of its innings 1 — P(u;,w) + P(u,,w). The number of runs that Team
2 needs to beat is this proportion of Team 1's total score, that is,
T[1 - P(uy,w) + P(uz,w)]. The winning target is the next highest integer.

Par score

Formula (4) can also be used to gauge the progress of Team 2 as it attempts to beat
the total T of Team 1. The “par’ score is defined as the total that Team 2 should have

acquired with u overs remaining and w wickets lost so as to be on course for a total
T.

For a 50-over innings P(u,w) is the proportion of the combined run-scoring resources
of the innings remaining with u overs left and w wickets fallen. The proportion of
resources used at this point is 1 — P(u,w) and so the par score is T [1- P(u,w)].

3. APPLICATIONS OF THE DUCKWORTH/L EWIS METHOD

Some hypothetical and actual examples are provided below that illustrate how the
Duckworth/Lewis method produces sensible revised targets under all known
circumstances. They also show how targets set by other methods, although
sometimes producing realistic targets, more often than not give targets which are not
sensible, being either too easy or too difficult.



Resetting the Target in Interrupted One-day Cricket Matches 59

Hypothetical examples

For ease of understanding of the application of the Duckworth/Lewis method we
shall use the same total score for Team 1 and the same number of overs lost,
although the method will, of course, apply to any total score and to any number of
- overs lost. Throughout all these hypothetical examples we shall assume that Team 1
has completed its 50-over innings and scored 250 runs, and that interruptions to
Team 2's innings are of 20 overs in length. The interruptions occur at different stages
of Team 2's innings and with different numbers of wickets lost. Table 2 summarises
all of the situations and the calculations to obtain the D/L revised target score to
win.

Example I covers the situation where the interruption occurs before Team 2
commences its innings and so it is known in advance that only 30 overs will be
received. In this situation ARR falls down, yielding the relatively easy target of 151.
With all ten wickets available, but fewer overs to bat, a more challenging target is
fair. The Duckworth/Lewis method, which sets 193 runs to win in 30 overs, gives a
target as challenging as the original 251 to win in the full 50-overs. Note that in this
circumstance, the PARAB and WC96 methods, at 190 & 191 respectively, produce
comparable targets to the D/L method. The MPO target at 201 is slightly harder
whereas the DMPO target is slightly easier. All the methods, except ARR, produce a
target reasonably in keeping with the situation of knowing in advance that the
second innings has been shortened.

Example II shows the effect of an interruption part way through Team 2's innings.
Team 2 has made a solid start and, at 75 for no wicket, is in a strong position from
which to accelerate and score the remaining 176 runs to win in 30 overs. This target is
less demanding than in Example I reflecting the fact that Team 2 is in a strong
position at the interruption and being well ahead of the D/L par of 57.5. It has used

only 22.9% of its run-scoring resources even though 40% of the overs have been
bowled.

The D/L target reflects the strength of Team 2's position by providing a revised
target of 143 which is a further 68 runs in ten overs. This should normally be
achievable with all ten wickets in hand. Of the other methods, only ARR at 151 can
be regarded as reasonably fair in this circumstance..

The PARAB, WC96, MPO and DMPO methods yield targets in the range 181 to 201.
These are grossly unfair to Team 2, which then requires between 106 and 126 further
runs to win in the ten overs. The balance of the game is badly upset because all these
methods do not take account of the stage of the innings at which the overs are lost.
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Table 2. Calculations of revised target score in hypothetical examples

Hypothetical example no. .... I I I v \" VI
Team 2 score, chasing 250 (=T) in 50 overs 0 75 120 75 191 180
Wickets lost, w 0 0 0 2 9 4
Overs left at the interruption, uj 50 30 20 30 20 20
Overs left at the resumption, up 30 10 0 10 0 0
Propn. of innings left at interruption P(u1,w) 1 771 589 682 076 461
Propn. of innings left at resumption P(up,w) 771 341 0 325 0 0

Propn. lost in (u1—ug) overs=P(uj,w) - P(uz,w) 229 430 .589 .357 076 461
Propn. available 1 - [P(u1,w) - P(ug,w)] 771 570 411 .643 924 539
Revised score to beat:

T [1-P(uq,w) + P(ug,w)] 1928 1425 1028 160.8 231.0 1348

Revised target score

D/L 193 143 103 161 232 135
ARR 151 151 151 151 151 151
PARAB 190 190 190 190 190 190
WC96 191 191 191 191 191 191
MPO* 201 201 201 201 201 201
DMPO* 181 181 181 181 181 181

Par score (D/L method)
T[1-Plu,w)] 0 57.3 102.8 79.5 231.0 134.8

*

The targets by the MPO and DMPO methods cannot be evaluated properly without the actual score cards to find
the total of the 30 most productive overs. To obtain some comparative figures we have assumed that the 20 least
productive overs yielded 50 runs, which is half the average run-rate. Therefore, the 30 most productive overs
yielded 200 runs.

Example III takes the situation of the loss of the 20 overs at the end of the innings.
That is, Team 2's innings has been prematurely terminated and the game abandoned.
Team 2, at 120 for no wicket, is in a very strong position. Although 60% of the overs
have been bowled, only 41.1% of the run-scoring resources of its innings have been
used. The D/L par for this point in its innings is 102.8 with no wickets lost, and so, at
120, it can be regarded as being well on course for a score of over 250. The team
requires only a further 131 runs to win in 20 overs which it would expect to achieve
comfortably having all ten wickets still in hand.

A decision on the winner is required. Only our method, the D/L method, would
justly declare Team 2 the winner. The other methods would require Team 2 to have
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scored between 151 and 201 by the end of the 30th over to be declared the winner.
All these other methods would clearly produce unfair decisions on the winner in this
circumstance. They all take no account of the stage of the innings that the overs have
been lost.

The D/L method, with its concept of par score, enables a judgement to be made, at
any stage of Team 2's innings, on which team is winning. If Team 2's score is ahead
of par it is winning, if it is below par Team 2 is losing. In an abandoned match, the
D/L method awards victory to the team that is winning when play is stopped.

Example IV introduces the effect of wickets into the assessment of the target.
Compared with the situation in Example II, Team 2 has lost two wickets in scoring
the 75 runs and so it is in a weaker position. Our par score is 79.5 and so Team 2 is
losing at this point of its innings. The revised target should reflect this. The D/L
method does so by requiring a further 86 runs to win in the ten overs with eight
wickets left. The method maintains the balance of the game at the stage of the
interruption.

The ARR method requires only 76 more runs to win, the same as in Example II. This
is rather easier than Team 2 deserves. It has not taken account of the loss of wickets
at the stage of the interruption. The other methods still require unfair tasks of scoring
between 106 and 126 further runs to win.

All except the D/L method have provided targets which upset the balance of the
game as it was at the interruption.

Example V is perhaps a rather extreme case, but it does further emphasise the
importance of considering the number of wickets that have been lost. The scenario
might be that Team 2 has been batting extremely well at over six runs per over but
then collapses to be nearly all out. A further 60 runs are needed to win in 20 overs
but, with the last man at the crease, the odds are strongly in favour of Team 1
winning. When the remaining overs are lost, however, and the game is abandoned a
decision on the winner is required.

Only the D/L method would fairly make Team 1 the winner; Team 2 being well
behind the par of 231 for that stage of its innings. All the other methods would,
unfairly, make Team 2 the winner. The weakness of Team 2's position would not
have been taken into account.

Example VI takes a not-dissimilar situation to Example V, but now Team 2 has lost
only four wickets and has scored 180, 11 runs fewer. Team 2 needs only 71 runs to
win in 20 overs and, with six wickets in hand, it is in a very strong position and
would be expected to go on to win the game. The D/L requirement, the par, is 135
after 30 overs with four wickets lost. Having already scored 180 runs, our method
would fairly make Team 2 the winner.

ARR would also be fair in this circumstance in making Team 2 the winner. The
PARAB, WC96, MPO and DMPO methods, however, would unfairly make Team 1
the winner! At that stage of the innings, the lost overs represent a deprivation of a
substantial proportion of the combined run-scoring resources still available in Team
2's innings.
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All these hypothetical examples, in various ways, emphasise strongly that, when
resetting the target score, there is a need to consider both the stage of the innings
when the overs are lost and the number of wickets that have fallen at that point. The
Duckworth/Lewis method is the only one of these methods that yields sensible
targets in all these situations.

All the other methods yield sensible targets in only a few of these situations. It will
be noted from Table 2 that all methods except the D/L method set the same target
score for all the examples. There is no variation with the stage of the innings that the
overs are lost or how many wickets have fallen.

Actual examples

The examples considered so far have taken hypothetical situations. We now include
several applications of the D/L method to actual international games, some of which
would have produced results different from those which actually occurred.

Because no game in the 1996 World Cup needed a revised target score, we have
taken most of our examples from the 1992 World Cup in Australia. Several of these
games were affected by rain, some leading to very controversial situations. In this
competition the MPO method was used whereby the same number of highest
scoring overs of the team batting first was used to set the target for the second team.
Table 3 summarises the situations for three of the games.

In the RSA/ENG game England made a very positive start at 63 for no wicket, and,
according to the D/L par score of 28.3, were well on course to achieve the 237 runs
needed to win. They were then deprived of nine overs by the weather but only 11
runs came off the target by the MPO method. This was regarded as very unfair,
forcing England into a desperate scramble they didn't deserve given the strong
position they were in. Although they did make the 226 and win the game the D/L
target of 207 to win would have been easier to achieve and much fairer to England.

The other methods produce either a too-easy target of 194 by ARR (unfair to South
Africa) or more difficult targets from 215 to 226 (unfair to England). The D/L target
is the only one which maintains the balance of the game as it was at the beginning of
the interruption.

In the RSA/PAK game, Pakistan got off to a reasonable start at 74 for 2 wickets in 21
overs chasing a below average score. They were ahead of the D/L par of 69.6 for that
stage of their innings. The loss of 14 overs in the middle of the innings impinged
very badly on their prospects. Using MPO only 19 runs were deducted from their
target. The required total of 193 (a further 119 in 15 overs) proved beyond them; they
scored only 173 and lost. The D/L method would have given the easier and much-
fairer target of 164 (a further 90 in 15 overs) and they would have won. ARR would
produce a too-easy target (78 in 15 overs) which would have been unfair to South
Africa. The other methods would have produced more difficult targets, unfair to
Pakistan.
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Table 3. Calculations of the revised target score in actual matches, World Cup 1992

Match (Team 1/Team 2) RSA/ENG RSA/PAK ENG/RSA
Team 1 score(T) 236 211 252
Overs in the innings 50 50 45
Team 2 score 63 74 231
Wickets lost, w 0 2 6
Overs left at the interruption, u; 38 29 2.1
Overs left at the resumption, u, 29 15 0.1
Propn. of innings at interruption P(u;,w) .880 670 072"
Propn. of innings at resumption P(u,w) 755 444 Qf
Propn. lost in (u;-up) overs P(u;,w) - P(uy,w) 125 226 075"
Propn. available 1 - [P(uy,w) - P(up,w)] .875 774 925
Revised score to beat:
T[1-P(u,w) + P(upw)] 206.5 163.3 233.1
Revised target score
D/L method 207 164 234
ARR 194 152 241
PARAB 217 180 248"
WC96 218 180 248"
MPO(actual method in use) 226 193 252
DMPO(current Aust. method) 215 179 249
Par score (D/L method) T [1-P(uy,w)] 28.3 69.6 231.7

where RSA=Republic of South Africa, PAK = Pakistan and ENG = England.

*

The proportion for the last two complete overs has been used as an approximation for the proportion of the
resources of the innings lost.

"The first irmin%s lasted only 45 overs. The proportion of the run-scoring resources of the innings lost has been
rebased so that P(45,0) = 1.00; similarly for the PARAB and WC96 targets.

The ENG/RSA game, a semi-final of the World Cup, exposed the problem of the
MPO method and led subsequently to more flexible playing conditions when games
are interrupted. South Africa's innings in reply was interrupted with 2.1 overs (13
balls) remaining and resumed with 0.1 overs (1 ball) left! Much debate has since
centred on why the full 13 balls couldn't have been bowled; there was certainly
sufficient time. The umpires applied the rules, however, and the MPO method took
England's 43 most productive overs which totalled 251 and so South Africa's target
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was reduced from 253 to 252 to win. From a position of requiring 22 runs from 13
balls, where they had a fighting chance, they were placed into the impossible
position of scoring 21 runs from the one ball! The MPO method had failed. The D/L
method would have given a revised target of 234, which is three runs in one ball.
South Africa's fighting chance would have been retained.

To obtain this target it has been assumed that fractional overs are handled in one of
several ways. These include taking the nearest complete overs, or the score at the end
of the previous over, or by linear interpolation. It is quite possible also to extend
Appendix 2 to handle every single ball. The ICC has indicated that, whilst
recognising the need for a rule for assessing the target when stoppages occur part
way through an over, a table on a ball-by-ball basis is not desirable.

For this example we have taken, from Appendix 2, the proportions for the nearest
complete overs (that is 2 overs and 0 overs left respectively with six wickets fallen).
Using complete overs, the difference in proportions, from Appendix 2 with six
wickets lost, is 7.2% but based upon a 50-over innings. For a 45-over innings all these
proportions need to be rebased. This is done by dividing all proportions by
Z(45,0) = 0.955. Therefore, the lost proportion of the innings for South Africa is 7.5%.

4. INTERRUPTIONS TO TEAM 1'S INNINGS

Sometimes it happens that Team 1's innings is interrupted and either prematurely
terminated or resumed later to complete a shorter innings. Either circumstance can
be unfair to Team 1 and, unless an appropriate correction is made in the calculation
of Team 2's target, some injustices can occur. The Duckworth/Lewis method can
provide a fair target for Team 2 in both of these circumstances.

India v Pakistan, Singer Cup, Singapore, April 1996 - Premature termination of the
first innings

India had scored 226 for 8 wickets in 47.1 out of 50 overs when rain interrupted play.
Their innings was terminated and Pakistan were given a revised target of 186 in 33
overs based on the PARAB method. Pakistan won with overs to spare. The
unfairness in this target is that India were unexpectedly deprived of 2.5 overs right at
the end of their innings whereas Pakistan knew in advance that only 33 overs would
be received. The D/L method would provide a fairer target in the following way.

India were deprived of 2.5 overs which represents 8.1% of their innings resources
(using linear interpolation on the proportion of the innings for the 48th over with
eight wickets lost). Thus, India's 226 was a score obtained from 91.9% of their
resources and so a reasonable estimate of their final score would be
226/0.919 = 245.9. Pakistan's reduced target should therefore be based on 245.9 in 50

overs. With 33 overs to bat the revised target score would be 0.815 x 245.9 = 200.7,
which is 201 to win and a much fairer target for Pakistan to chase..

England v New Zealand, World Series Cup, Perth, Australia, 1983 - Resumption of
the first innings

England, needing to beat New Zealand to qualify for the final stages of the
competition, had scored 45 runs for 3 wickets in 17.3 of an expected 50 overs when a
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heavy rain storm and a long delay led to the deduction of 27 overs from each
innings. England thus resumed their innings for a further 5.3 overs and scrambled 43
more runs to reach a score of 88 in the 23 overs.

New Zealand's target in 23 overs was 89 using the ARR method. New Zealand won
the game easily. It was clearly an unfair target because of the unexpected and drastic
reduction in the number of overs England were expecting to receive, whereas New
Zealand knew from the start of their innings that they were to receive only 23 overs
and could bat accordingly.

To apply the D/L method to this situation it is necessary to assess what proportion
of the run-scoring resources of their innings England lost because of the interruption.
Using linear interpolation in Appendix 2 for three wickets lost:-

Propn. left with 32.3 overs to play 0.644
Propn. left with 5.3 overs to play 0.191
Propn. lost in 27 overs 0.453

Propn. of innings available to England ~ 0.547

The score of 88 thus represents 54.7% of their projected total and so their final total
score in 50 overs is projected to be 88/0.547 = 160.9 runs. New Zealand, in 23 out of
50 overs, would be required to score 65.0% of this, a target of 104.5, which is 105 to
win. While this is still not a very demanding target, nevertheless it gives England
compensation for not knowing that the interruption would occur and yet rewards
New Zealand for playing England into a fairly weak position at the interruption. The
D/L target would have been fair to both teams.

5. MULTIPLE INTERRUPTIONS

The D/L method enables the effect of any stoppage to be assessed including multiple
stoppages to either innings. The cumulative proportion of the innings that has been
lost is recalculated after each stoppage. The calculations of the target score for
interruptions to either the first or the second innings are carried out just as for single
interruptions.

6. ACCEPTANCE OF THE METHOD

The method has been presented to the chief executives of the full-member countries
of the ICC at their meeting in London in July 1996. There is every indication that
member countries of the ICC will conduct tests of the method leading, hopefully, to
its ultimate adoption internationally.

7. CONCLUSION

In this paper we have explained the mechanisms of existing methods used for
resetting target scores in interrupted one-day cricket matches. Each of these methods
yields a fair target in some situations. None has proved satisfactory in deriving a fair
target under all circumstances.
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We have presented our proposed method of resetting the target score, the
Duckworth/Lewis method. Through the examples given, both hypothetical and real,
we have shown that our method gives sensible and fair targets in all these situations.
They include the circumstances where overs are lost at the start of the innings, part
way through, or at the end of the innings when the game is abandoned and a winner
has to be decided. The examples have shown the importance of taking into account
the wickets that have been lost at the time of the interruption and the stage of the
innings at which the overs were lost.

Our method handles situations where there are interruptions, not only to the second
innings but also to the first innings.

The basis of the Duckworth/Lewis method is a table of proportions derived from an
exponential relationship for the average number of runs which are scored from the
remaining resources of overs and wickets in combination.

The method is easy to understand and simple to apply, requiring nothing more than
a single- page table of percentages and a pocket calculator.

The Duckworth Lewis method has been presented to the cricketing authorities who

are showing interest in using it for resetting target scores in interrupted one-day
cricket matches.
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APPENDIX 1

Data on English county one-day matches and one-day internationals used to
estimate b and Z,

English County one-day matches, 1987.94 One-day internationals, 1987 96
b 0.03347 b 0.03150
Zo 2652 Zo 283.69

Compe'tition DVE[S Count Aclmm
Shot__ 310740923 1 J54.
Sundey. ~ 1719 13- 3263 1 124.8_
Lanu.&--a.-zu.---5-.;-J43.2-.|.-123.4-

mateches__, 23 __4___ 1233 _,_1424

_______ 125 1 5.0 138611503
SR T S S X I T Totsl 265
....... 1130 C3-__3585_I_18RQ-

_______ EhSC RN M ST
_________ 34 1 4. 361811802
_______;_35.___4__.__1.911)_;_18.3.0.
_______ +-38 2 814 | 1887
_______1_3Z_'__B__'_J343_+_1&8.3.-
_______ 1-38 13 5_3928_..1908
S_Le_agge__; -4Q 212 | _1978_, 1986
B_EI_H____,_EE__BZQ _2130_1_2231
N_alWest , 60 253 , 234.2 | 229.6
Total 911
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Appendix 2: Table of percentages of resources of the innings remaining

Percentage of innings remaining

Overs |Overs [Wickets lost

gone | left 0 1 2 3 4 5 6 7 8 9
0_[ 50 ] 100 924 | 838 | 738 | 624 | 495 | 376 265 | 164 76
1 | 49 | 992 | 918 | 833 | 735 | 622 | 494 | 376 265 | 164 756
2 | 48 | 983 | o1f 827 | 734 620 | 493 | 376 265 | 164 76
3 | 47 | 974 | 903 | 822 | 727 | e18 | 492 | 376 265 | 164 76
4 | 46 | 965 | 896 | 816 | 723 | 615 | 494 375 265 | 164 76
5 | 45 | 955 | 888 | 810 | 719 | e13 | 490 | 375 264 | 164 76
6 | 44 | o946 | 880 | 804 | 715 | 610 | 489 | 375 264 | 164 76
7 | 43 | 936 | 872 | 797 | 710 | 607 | 487 | 374 264 | 164 76
8 | 42 | 925 | 863 | 790 | 705 | 604 | 486 | 374 264 | 164 76
9 | 41 | 914 | 854 | 783 | 700 | 601 484 | 373 264 | 164 76
10 | 40 | 903 | 845 | 776 | 694 | 598 | 483 | 373 264 | 164 76
11 | 39 | 892 | 835 | 768 | 689 | 594 | 48 372 264 | 164 756
12 | 38 | 880 | 825 | 760 | 683 | 590 | 479 | 371 264 | 164 76
13 | 37 | 868 | 815 | 752 | 676 | 586 | 477 | 374 264 | 164 756
14 | 36 | 855 | 804 | 743 | 670 | 582 | 475 | 37.0 264 | 164 76
15 | 35 | 842 | 793 | 734 | 663 | 577 | 472 | 369 %63 | 164 76
16 | 34 | 829 | 781 724 | 656 | 572 | 470 | 368 %63 | 164 756
17 | 33 | 815 | 769 | 714 | 648 | 567 | 467 | 366 263 | 164 76
18 | 32 | 801 757 | 704 | 640 | 56 464 | 365 263 | 164 76
19 | 31 | 786 | 744 | 693 | 632 | 555 | 460 | 364 262 | 164 76
20 | 30 | 771 73.1 682 | 623 | 549 | 457 | 362 | 262 | 164 76
21 | 20 | 755 | 717 | 670 | e13 | 543 | 453 | 360 26.1 16.4 76
2 | 28 | 739 | 702 | 658 | 604 | 535 | 449 | 358 26.1 164 76
2 | 27 | 722 | 688 | 645 | 593 | 528 | 444 | 356 260 | 164 76
24 | 26 | 705 | 672 | 632 | 583 | 520 | 439 | 354 259 | 164 76
25 | 25 | 687 | 656 | 618 | 574 512 | 434 | 351 259 | 164 76
26 | 24 | 669 | 640 | 604 | 559 | 503 | 428 | 348 258 | 163 76
27 | 23 | 850 | 623 | 589 | 547 | 493 | 422 | 344 256 | 163 756
28 | 20 | 630 | 605 | 573 | 534 | 483 | 415 | 341 255 | 163 756
29 | 21 | 610 | 586 | 557 | 520 | 472 | 408 | 337 253 | 163 76
30 | 20 | 589 | 567 | 540 | 506 | 461 200 | 332 252 | 163 76
31 | 19 | 568 | 548 | 522 | 490 | 448 | 391 327 249 | 162 76
32 | 18 || 546 | 527 | 504 | 474 | 435 | 382 | 321 247 | 162 76
33 | 17 | 523 | 506 | 485 | 458 | 422 | 372 | 315 244 | 161 76
34 | 16 | 499 | 484 | 465 | 440 | 407 | 364 308 241 161 76
3% | 15 | 475 | 461 444 | 421 39.1 350 | 300 237 | 160 756
3 | 14 | 450 | 437 | 422 | 402 | 375 | 337 | 294 232 | 158 76
37 | 13 | 424 | 413 | 399 | 381 357 | 323 | 282 27 | 157 76
38 | 12 | 397 | 388 | 376 | 360 | 339 | 308 | 274 221 155 76
39 | 11 || 369 | 364 351 337 | 319 | 292 | 259 214 | 153 75
40 | 10 | 341 334 | 325 | 314 | 298 | 275 | 246 206 | 149 75
2 | 9 | 311 306 | 298 | 289 | 276 | 256 | 231 196 | 145 75
2 | 8 | 281 276 | 270 | 263 | 252 | 236 | 215 185 | 140 75
43 | 7 [ 250 | 245 | 241 B35 | 227 | 214 | 197 172 | 134 7.4
a4 | 6 | 217 | 214 | 211 206 | 200 | 190 [ 177 157 | 126 72
45 | 5 | 184 | 182 | 179 | 176 | 174 164 | 155 140 | 115 7.0
46 | 4 | 149 | 148 | 146 | 144 | 141 136 | 130 19 | 102 65
a7 | 3 | 114 | 113 | 112 [ 114 109 | 106 | 102 96 85 6.0
48 | 2 77 77 76 76 75 74 72 6.9 63 4.9
49 | 1 39 38 39 39 38 38 38 37 35 31
50 | 0 0 0 0 0 0 0 0 0 0 0

© 1996, Frank Duckworth, Royal Statistical Society, & Tony Lewis, University of the

West of England, Bristol
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IS CRICKET REALLY BY CHANCE?

Kuldeep Kumar!

Abstract

In this paper we have tested the hypothesis that run rate per over or runs made in
each over in a one day cricket match is random. We have also done a time series
analysis of the data. It is observed that in some cases it is possible to forecast the
run rate per over.

1. INTRODUCTION

The origin of cricket dates back to the 13th Century, and the first set of rules was
written in 1744. The Marylebone Cricket Club, which is the world governing body of
sports, was formed in 1787. During England’s colonial history, cricket was exposed
to countries around the world. Australia, New Zealand, India, England, Pakistan,
West Indies etc. are the primary countries that participate regularly in international
matches. Some newcomers are South Africa, Sri Lanka, Kenya, Zimbabwe, Holland
and UAE.

Cricket matches are divided into innings. A one day match, which is becoming more
popular these days as compared to five day test matches, consists of one innings of
50 overs for each team. Each side has one round at bat, and the innings is usually not
over until 10 batsmen are dismissed or 50 overs are finished. Each over consists of six
balls. (For details about the rules etc. see Encyclopedia Britannica; 15th edition, Vol.
28 Macropaedia, pp 115 - 120.)

2. WHAT IS CHANCE?

Chance always plays a major role in each and every activity of our lives. The fact that
the nervous system possesses a random structure and that the genetic transmissions
are subject to chance mechanism could be of profound significance. Not only one’s
time of birth, sex, growth, development, decay, time and mode of death are subject
to chance but one’s entire life of diverse activities can be interpreted, technically
speaking, as a sample path of a multi-dimensional stochastic process. It is a fact that
the God of Probability, or the Goddess of Chance, may be ruling our lives in this
universe.

One need not, therefore, wonder or speculate why the existing deterministic models
used in sports and various other fields are being replaced by stochastic models. For
instance, classical mechanics paves the way to statistical mechanics, communication

1School of Information Technology, Bond University, Gold Coast Qld 4229
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theory to statistical communication theory, mathematical genetics to statistical
genetics, differential equations to stochastic differential equations etc.

The deterministic models of currently fashionable bio mathematics must, sooner or
later, pave the way to more realistic stochastic models, if one has to take into account
the chance fluctuations in Nature. Put briefly, this is the era of probability and
statistical modelling, which has made inroads to physics, engineering, electronics
and communication, biomedical sciences, psychology, economics, industry, natural
planning, defence, sports and a host of other human activities.

3. TIME SERIES ANALYSIS

A time series is a collection of observations generated sequentially through time. The
special features of a time series are that the data are ordered with respect to time, and
that successive observations are usually expected to be dependent. The order of an

observation is denoted by a subscript t. Therefore, we denote by z; the t*
observation of a time series. The preceding observation is denoted by z;.jand the next
observation as z;1.

Usually in time series analysis measurements or readings are made at predetermined
and equally (or almost equally) spaced time intervals to generate hourly, daily,
monthly, or quarterly data. However, in some cases data may not be collected
corresponding to time as mentioned above. For example, the engineering data may
be a series of consecutive yields from a batch chemical process (Jenkins and Watts,
1968) in which yield is measured for each batch.

The purposes of time series analysis are generally two fold: to understand or model
the stochastic mechanism that gives rise to an observed series and to predict or
forecast future values of a series based on the history of that series.

4. DATA IN THE STUDY

Data in this study has been collected by the author during the last Wills World Cup
cricket matches (Feb — March, 1996) played in India/Pakistan/Sri Lanka. Data
consists of runs made in each over sequentially in each inning for the following
matches.

Match Countries Team Venue Date Comments
M1 Aust. vs SL Aust. Lahore 17.3.96 Final
M2 Aust. vs SL SL Lahore 17.3.96 Final
M3 India vs SL SL Calcutta 13.3.96 SF
M4 India vs SL India Calcutta 13.3.96 SF
M5 Aust. vs WI Aust. Chandigarh 14.3.96 SF
Mé Aust. vs WI WI Chandigarh 14.3.96 SF
M7 Aust. vs NZ NZ Madras 11.3.96 QF
MsS Aust. vs NZ Aust. Madras 11.3.96 QF

SL: Sri Lanka, WI: West Indies, NZ: New Zealand, SF: Semi Final, QF: Quarter
Final
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In this paper we have considered runs made in each over sequentially throughout
the whole inning of 50 overs (or less in case all the players are out). Since the data is
collected sequentially over a period of time the runs made in each over or run rate
could be considered as a time series. This is a discrete time series which is obtained
by accumulating a variable (run) over a period of time (over). This is similar to time
series of the yield from a batch process which is accumulated over the batch time.
Similar examples are noted in quality control where the number of defectives are
counted in each batch over a period of time.

In this paper we have tested the hypothesis that the run rate per over is random
against the alternative that it follows some trend. Using the times series analysis we
have also tried to forecast the run rate per over.

5. CLASSICAL TIME SERIES ANALYSIS OF THE DATA

The classical approach to time series analysis begins with the premise that a typical
time series has the four components — trend, seasonal, cyclical, and irregular to grow
or decrease fairly steadily over quite long periods of time, and this pattern is
identified as trend. The trend can be described for the time series z; as

Z =B0+B1t+8t

In case there is no trend then z; = B¢ which implies there is no long run growth or
decline in the time series over time.

Seasonal variations refer to variations of periodic nature. It is not limited to periodic
variation associated with the seasons of the year. Usually in time series analysis the
unit of time referred to in discussing seasonal variation is less than a year. Cyclical
variation refers to those up-and-down fluctuations that are observable over an
extended period of time. These wavelike fluctuations, called business cycles, are
different from seasonal fluctuations in that they cover longer periods of time, have
different causes and are less predictable. Irregular or random variation is considered
to be due to a host of unpredictable influences and is not accounted for by trend,
seasonal or cyclical factors. With cricket data the seasonal and cyclical factors can be
ruled out and we can assume that there is a trend and irregular components in the
data only.

In this section we have tried to check if there is any trend in the data of runs made in
each over. We have fitted the model

Z =|30+|31t+8t

In case B, is insignificant it will imply that there is no trend in data. The result for the
various innings are given below in Table 1 for runs made in each over.
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Table 1
Match B, B, t-value p-value R-Square
M1 5.04 -0.0086 -0.3447 0.7317 0.002
M2 3.98 0.0485 0.3631 0.1794 0.039
M3 5.35 -0.0123 -0.4007 0.6904 0.003
M4 5.09 -0.0892 -2.4028 0.0221* 0.165
M5 1.21 0.1147 4.7543 1.79E-05**  0.320
M6 3.77 0.0104 0.3802 0.7054 0.003
M7 6.39 -0.0266 -0.8118 0.4208 0.013
M8 3.43 0.1056 2.9991 0.0043** 0.163

Out of 8 innings P, is found significant in two innings* at a 1% level of significance
and in one innings** at a 5% level of significance. If we look closely at these innings it
can be observed that at least one partnership (or pair) survived for more than 15
overs. However, the coefficient of determination RZ was found to be quite small for
almost all the matches, the maximum being 32.0%.

However, if we consider the run rate per over and regress it over time the results are
improved as shown in Table 2.

Table 2
Match B, B, p-value R-Square
M1 5.38 -0.0145 0* 0.248
M2 5.23 -0.0116 0.133 0.049
M3 5.47 -0.0971 0.201 0.034
M4 4.79 0.0316 o* 0.433
M5 1.63 0.0443 o 0.748
M6 3.41 0.0162 0.002* 0.179
M7 7.05 -0.0329 0.012* 0.125
M8 2.47 0.842 0* 0.806

In this case out of 8 innings [, is significant in 6 innings*. The coefficient of
determination R2 has also improved and the maximum value is now 80.6%. From
Table 1 and Table 2 we can conclude that there is a trend in run rate per over.

6. TIME SERIES MODELS

Since the appearance of the book by Box and Jenkins (1976) the use of auto regressive
moving average (ARMA) models has become widespread in many areas of
forecasting. It includes a special case and many other methods including the various
forms of exponential smoothing. The whole Box-Jenkins” approach revolves around
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three basic models — Auto regressive (AR), Moving Average (MA) and mixed auto
regressive moving average (ARMA) models. The auto regressive model of order p
written as AR(p) is defined as

z,=0,2,, + q>zzt_2+...(1)pzt_p +a,

where a; is the sequence of random or white noise and it is assumed that it follows a
normal distribution.

The moving average model of order q denoted as MA(q) is defined as
z,=a,—¢,a,_; —0,a,_,.. .q>qat_q
The mixed auto regressive model of order (p, q) denoted as ARMA(p, q) is defined as
Z,=0,2,_, +0,Z,_,+.. .+<1>pzt_p +a, —,a,_;.. .¢2at_q

A stationary series has a constant mean and variance and a covariance structure
which depends only on the difference between two time points. However, there are
quite a few time series which are non-stationary. It has been found that if the series is
non-stationary and the series is differenced one then it becomes stationary. If a series
has to be differenced once to obtain stationarity, then the model corresponding to
original series is called an integrated ARMA model of order p, 1, q or an ARIMA (p,
1, q). If differencing has to be performed at times to obtain stationarity the model is
called an ARIMA (p, d, q) model.

The Box-Jenkins iterative approach for constructing linear time series models
consists of four steps: identification of the model, estimation of the parameters of the
model, diagnostic checking of model adequacy and finally forecasting future
realisations.

The most crucial step in the Box-Jenkins approach to time series analysis is the
specification or identification of the correct model. The rest of the steps are automatic
in nature and any standard statistical package, eg. MINITAB or SPSS can do it. The
two tools which are commonly used to specify ARMA models are the auto
correlation function (ACF) and the partial auto correlation function (PACEF). For the
observed series z1, z,...,z, the ACF of order or lag is defined as

b= 222w ) g,
2(z, — z)

It can be shown that for a moving average process of order q (MA (q)) the ACF is
zero for orders greater than q. Hence the sample ACF is a good indicator of the order
of the MA process. However, the ACF of auto regressive model do not remain zero
after certain lags. The order of an AR model can be determined by using the partial
auto correlation function (PACF). PACF at lag k is defined as the correlation between
z; and z, after removing the effect of the intervening variables z;.1, z.y, ..., Zt-x+1 and
is denoted by ¢kk. It can be shown theoretically that PACF of AR (p) model is zero
beyond lag p.
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Briefly, whereas the ACF of AR (p) tails off, its PACF has a cut off after lag p.
Conversely, the ACF of a MA (q) process of order g has a cut off after lag g, while its
PACEF tails off. If both the ACF and PACF tail off a mixed ARMA process is
suggested. However, it is difficult to specify a mixed ARMA process by just looking
at the ACF and PACF. Kumar (1986, 92) has developed a very simple but powerful
method based on the theory of Padé approximation for the identification of mixed
ARMA (p, q) model.

Looking at the ACF and PACF of the data the following models were selected as
shown in Table 3 for different innings using run rate per over. It was observed that
ACF and PACEF of runs made in each over do not specify any model in most of the
cases.

Table 3
Match Model Mean Square Error
(for run rate per over)
M1 ARIMA (3,0,0) 0.02468
M2 ARIMA (1,0,1) 0.1708
M3 ARIMA (1,0,0) 0.3528
M4 ARIMA (2,0,0) 0.1349
M5 ARIMA (1,1,0) 0.05184
Mé6 ARIMA (0,0,2) 0.07786
M7 ARIMA (0,0,1) 0.2323
M8 ARIMA (1,1,0) 0.0936

Based on the above model we try to forecast the runs made in each over and run rate
per over for the last 5 overs in each inning. The results are given in Table 4. It is
observed that it is easier to get a good forecast of run rate per over as compared to
runs made in each over. Also the Box-Jenkins’ model works better than the simple
regression.

Table 4 Forecast of run rate per over

Last 5 M M2 M3 M4 M5 Meé M7 M8
Overs A F A F A F A F A F A F A F A F
1 463 465 478 478 489 485 376 392 381 380 395 38 563 615 665 551
2 461 466 493 481 502 487 370 384 380 381 389
3 464 465 511 495 493 498 362 378 384 380 404

4 475 470 515 513 50 491 357 372 389 38 404

Last 482 482 523 518 504 496 352 366 393 393 404
over

A: Actual
F: Forecast
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7. THE RUN TEST

Using the run test we can test the null hypothesis that the time series data is random
against the alternative that there is a trend or that data exhibit a typical pattern of
non-randomness. In case the null hypothesis is accepted it will imply that the runs
made in each over is random or in other words the runs made in each over is
independent of that in any other.

The use of the runs’ test is not limited to testing the null hypothesis that a sample is
random. The test can be applied to any sequence for randomness, no matter how the
sequence is generated. The runs’ test is frequently used to determine whether the
residuals observed as part of a regression are likely to have come from a population
in which the assumption of independent error term is violated. It is a non-parametric
test and no assumption is made about the distribution from which the observations
are drawn.

Suppose that we have a time series of n observations . A sequence of signs, with +
denoting a value above the median and — a true value below, is formed from these
data. Let R denote the number of runs in the sequence. The null hypothesis to be
tested is of randomness in the time series. For a time series of more than 20
observations, the distribution of the number of runs under the null hypothesis can be
approximated by the normal distribution. The test statistic

has a standard normal distribution.

The results for different innings are given below in Table 6.

Table 6

Match k p-value
M1 5.0086 0.000*
M2 4.9567 0.000*
M3 5.1985 0.000*
M4 4.1940 0.0073*
M5 2.7629 0.000*
Mé 3.8219 0.000*
M7 6.2061 0.000*
M8 4.5338 0.000*

It can be observed that in all the cases the hypothesis is that the data is rejected. It
confirms that data exhibits a trend and justifies the time series analysis done earlier
in section 5 and 6.
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8. CONCLUSION

The above data confirms that cricket is not by chance. Data does not show a random
pattern but follows some kind of trend. It is possible to forecast the run rate per over
for the last few overs using a Box-Jenkins’ approach.

However, more appropriate analyses can be attempted by using sophisticated
models like intervention time series models. This is in view of the fact that after a
wicket falls there is some intervention otherwise the trend may continue.
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GROUND REACTION FORCES AND HUB POSITION
IN THE GOLFSWING

J. E. Baker!

Abstract

Earlier studies of the ground reaction forces that occur during a golfswing have
gone a long way to providing a description of what happens during this complex
physical action. However, many questions remain concerning why such forces can
be observed and what are the implications for helping players to improve their
performance. A case study approach was adopted to provide a qualitative
description of the golfswing; others having already provided detailed quantitative
analyses of swing data obtained through repeated trials. This qualitative approach
should be seen as a complement to the quantitative results of others such as
Carlsoo [3], Cooper [5], Richard [10], Fishman [7] and Barrentine [1].

1. INTRODUCTION

The aim of this paper is to find an explanation of the pattern of ground reaction
forces that were observed when a player swings a golf club, and to indicate how this
explanation might be of importance to the golf coach. The focus is on the vertical
component of ground reaction force, the VGR. VGR will be used in this article to
refer to the Vertical Ground Reaction of the player during the swing. VGR is not
measured directly by the Kissler Force Plate, but can be derived as the Total Vertical
Force experienced by the plate less the player’s bodyweight. It is that part of the total
vertical force that is caused by swinging the club, rather than just standing on the
plate. There have been a number of studies of the VGR of golf players, the purpose of
which has been to enable a better understanding of what occurs during a golfswing.
One such study, Fishman [7], reported on weight transfer with results that prompted
further investigation. His findings indicated that while there is a shift in weight from
one foot to the other during the golfswing, the total VGR remains constant. Cooper
[5], on the other hand showed substantial variation in VGR during the swing. Two
surprising features of Cooper’s findings are that:

e  The VGR patterns are distinctively different for the 7-iron, 3-iron and driver,
suggesting that the golfer swings differently for different clubs.

e The maximum VGR for the driver occurs very early in the downswing,
approximately 0.1 seconds after the start of a process that lasts 0.25 seconds. At
this stage of the swing, the player is pulling the club and their arms downwards
which ought to show as a less-than-body-weight VGR.

1 Tarata Learning Systems (Technology Consultants), Tarata Rd, Buanaba, Queensland.
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The comprehensive study of Barrentine, Fleisig, Johnson and Woolley [1] gives an
indirect picture of total VGR, since their data was collected by using separate force
plates for left and right feet. In a situation where only one force plate is available to
measure the forces, the results of their study are difficult to interpret.

In the first published discussion of ground reaction forces, Carlsoo [3] suggested that
“the marked but brief diminution of the load on the left foot after impact is quite
certainly a result of the force of support”, a force that he attributes to the contact of
the clubhead with the ground. If this were the case, the golfer should report
experiencing a push through the hands as a result of contact with the ground; but no
records of this have been reported.

As will be shown later, a feature of VGR force can be explained in terms of the
rotation of the player about the hub of the swing. If the golfswing is considered as a
two-arm pendulum, as first proposed by Williams [12], the hub of the swing is
defined as the point about which the first pendulum arm rotates. The second arm of
the pendulum is the club itself. The motion of the hub during the swing has been a
feature of many studies of the golfswing, most notably Sanders and Owens [11] who
investigated the swings of novice and elite players to determine where the hub is
located. Unfortunately, they had hold of the ‘wrong end of the stick’, as their paper
traces the position of the instantaneous centre of rotation of the clubhead rather than
the grip. The hub is the point about which the player’s hands, and hence the club
grip, rotate rather than the clubhead. During the downswing, the player’s body
makes a forward movement as indicated by the forward shift of COVP. COVP is the
‘centre of vertical pressure’. Movements of the COVP during the downswing
correspond to movement of the player’s centre of gravity, or weight transfer, as the
swing proceeds. The position of the hub appears to shift in a similar way. The shift
was noted by Jergensen [8] and then Cochran and Stobbs [4, page 21] posed the
problem of hub position by saying:

The reasons for this shift are not yet entirely clear, or at least not yet
scientifically substantiated.

One aim of this paper is to suggest why the shift is made, and whereabouts in the
body the hub is located.

2. METHOD

The golfswings that formed the basis of the analysis were of three young golfers
(aged 17) who represented Australia in the World School Championships, 1995, and
won convincingly. The subjects were chosen because, from the case study point of
view ,their swings showed different characteristics which demanded explanation.
Subject 1 was the longest hitting player, Subject 2 was noted for a very accurate short
game and steady performance off the tee, while Subject 3 was the only left-hander in
the group. Ground reaction force data were collected during three separate occasions
using a Kissler force plate. The experimental data output by the Kissler device were
analysed as follows:

e  The vertical VGR and COVP data were smoothed using a 10-point moving
average. Because of the high sample rate, this process removed none of the
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characteristics of the data, but made the resulting experimental data curves
more representative of the trends in force and position.

e The time component was converted to a % of total swing time figure, to
facilitate comparisons between swings.

e  The theoretical model parameters, described below, were determined by
minimising the root-mean-square difference between expected and observed
data. The minimisation process was performed by a gradient descent method.

3. PARAMETERS OF THE THEORETICAL VGR

From the point of view of Newtonian mechanics, Figure 1 shows a basic pattern of
VGR that theoretical considerations suggest occurs during the golfswing.

Theoretical Force

350 1
300 +
250 1
200 +
150 1
100 +
50 1
0 ""//-—\ t t t t t t P A
i 20 W 60 \By

force (N)

50 | 100
-100 +

-150 +

% swing time

Figure 1: Theoretical force pattern

The graph of Figure 1 was based on elementary Newtonian principles and was
formed by combining ‘normal’ functions of the form:

y=fexp(ﬂj &

20°

where the parameter, f, is a measure of the maximum force occurring during the
current time interval and is given in Newtons and the mean, u, standard deviation,
o, and swing time, t, are given in terms of the percent of the total time taken for the
swing. With functions of this kind, their influence is restricted to a region within 2¢

of i, and the influence decays rapidly to zero outside that region. Thus the formula
for the theoretical VGR is given as:
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The purpose of this formulation is to enable comparison between trials and players
to be made in reasonably precise terms. The values of the force, mean and standard
deviation parameters are given in Table 1.

This basic pattern was present in all the swings of the sample, but there is a further
feature whose presence can be noted in the sample data, and which is seen as a dip
in the VGR vs % time graph that occurs at about impact.

To model this feature, we introduce a sixth term to Equation 2, formed by
multiplying the function of Equation 1 by

sin(n(t —H )j

20
which gives the negative and positive parts of the dip, but confined to a region of 2o
about u. The theoretical VGR function now becomes:

vgr(t) = 25: /i exp(ﬂ’—)-z—J + £ sin(n—(tlﬁ)) CXP[M) 3)

20} 20, 20

Table 1: Parameters of a theoretical VGR force

Phase Force Mean StDev Comment

0-30 50.0 150 75 The first part of backswing stage of the swing
involves raising the arms and club above
shoulder level. Raising a mass in this way
causes an increase in VGR above body mass.

30-50 -120.0 40.0 5.0 In this part of the swing, the backswing slows
down, and effort is put into pulling the club and
arms downwards. The top of the backswing
typically occurs at the 35% mark. The slowing
down and pulling down processes both show as
a less-than-body-mass VGR.

50-70 3500 60.0 5.0 The maximum forces of the swing occur slightly
before impact, when the player plants the left
foot and makes a large effort to pull the club
upwards, against the centrifugal forces
generated by the circular motion of the arms
and club. Impact occurs at about the 65% mark.
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To counteract the centrifugal forces of the arms
and club, the player has to pull upwards, hence
the sharp increase in VGR above body mass.

70-85 -1100 80.0 5.0 During the follow through, the momentum of
the arms and club is now upwards and the
player has to slow the motion down. To slow
the motion down, the player has to pull
downwards, which shows as a decrease in VGR.

85-100 30.0 95.0 25 There is a final raising of the body and slowing
of the club which results in this increase in
vertical force. This shows as a small increase in
VGR above body mass.

Figure 2 (see next page) shows the theoretical and actual curves superimposed, and
gives a visual indication of the level of agreement.

Of most interest here is the extent to which the dip phenomenon, as measured by the
additional sixth term, is present in the subjects” swings. Thus the force, mean and
standard deviation values for the impact phase and dip in the theoretical graph of
Figure 2 are given in Table 2. Parameters for five other sets of experimental data are
also included.

4 EXPERIMENTAL DATA

Experimental data for three subjects were collected for swings with a driver and a 5-
iron. Subjects 2 and 3 show similar features to those exhibited by Subject 1. Figures 3
and 4 give the comparative charts for the actual and theoretical force patterns for
Subject 2, while Figures 7 and 8 are the comparative charts for Subject 3. Table 2
summarises the theoretical parameters for all subjects using the driver and 5-iron.

Table 2: Parameters of the theoretical curves to fit data from Subjects 1, 2 and 3
Columns 2 - 4 for Driver, Columns 5 - 7 for 5-iron.

Driver 5-iron
Subject 1 Subject 2 Subject3  Subject 1 Subject 2 Subject 3

£ 4261 3313 5825 360.8 2655 4668
4 582 582 554 578 500 605
o 27 29 38 30 33 35
fi 1739 5467 8415 127.1 2892 5234
u 682 674 613 631 569 642

o 24 3.2 3.8 4.7 3.0 29
6
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Figure 2: Actual and theoretical VGR forces for Subject 1 with driver
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Figure

3: Actual and theoretical VGR forces for Subject 1 with 5-iron
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Figure 4: Actual and theoretical VGR forces for Subject 2 with driver
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Figure 5: Actual and theoretical VGR forces for Subject 2 with 5-iron
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Figure 6: Actual and theoretical VGR forces for Subject 3 with driver
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Figure 7: Actual and theoretical VGR forces for Subject 3 with 5-iron

What becomes clear by inspecting the data and graphs, is that:

e The theoretical curve of Figure 1, without the dip component, is evident in all
three subjects, and independent of the club used. The main difference between

players is not so much in the timing of their swings, as shown by variation in y;
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values, as in the variation in f; values, with the higher values being recorded for
the heavier subjects.

e  The dip component is different for each subject, with the dip for the driver
being more pronounced than the dip with 5-iron. This trend is supported by the
theoretical values for hy, which show an average drop of 37% from driver to 5-
iron values.

e Anexplanation of the dip phenomenon cannot be found by looking at the club-
ground reaction, as suggested by Carlsoo. Since there is such a noticeable
difference between the driver and 5-iron, and, of the two, the 5-iron shot tends
to make more contact with the ground than does the driver, one should expect
a lesser dip with the driver than the 5-iron.

In each of the trials analysed, it was noticeable that the rapid increase in VGR
coincided with a movement of COVP in the medial direction towards the target. For
example, Figure 8 clearly shows this process, which corresponds to weight transfer
from rear to front foot during the downswing.

Comparison of COVP and VGR
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Figure 8: Comparison of COVP position and VGR force for Subject 1 (Driver)

It was also noted that weight transfer continued after the maximum VGR and that a
slight reversal of the transfer coincided with the local minimum VGR in the dip.

5. CONCLUSIONS

Studies that focus on the mechanics of the golfswing, such as Williams [12] and
Daish [6], make it quite clear that to maintain the motion of the clubhead just before
and through impact considerable vertical force needs to be applied, which would
manifest in a larger-than-bodyweight VGR. Williams [12] calculates this force to be
107 Ib wt (477 Newtons) towards the hub of the swing. And yet, for the subjects of
this investigation, the VGR dips to below or close to bodyweight at this crucial
moment in the swing.
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The dip is clearly evident in swings with a driver, and is present, but less
pronounced, in swings with the 5-iron. To explain this phenomenon, we need to
consider the basis of the mechanical models presented in the literature. The authors
cited above consider the swing in terms of a compound 2-arm pendulum in which
the hub is considered as a fixed point (physically located between the shoulders on
the spine), the first pendulum arm is an imaginary line from hub to grip (not to be
confused with the player’s arm) and the second pendulum arm is the club itself.
Jorgensen [8] adds a forward motion of the hub to the above, and this noticeably
improves the match between observed and theoretical data. Suppose that the hub of
the swing is positioned not on the spine, but at a point closer to the front shoulder
than the rear shoulder, as shown in Figure 9.

hub

arm

Figure 9: Location of Hub between spine and left shoulder

In this case, the motion, in which the player’s torso rotates underneath the axis of the
hub, would be such as to cause a substantial reduction in VGR, and the near body-
weight VGR at impact would be explained. Also, since the player exerts most force
by a pulling action along the left arm, the closer the hub is to the left shoulder, the
less the amount of torque that the player would have to generate about the hub in
order to exert a large pull along the left arm.

The extent of the reduction in VGR or dip, as measured by the f¢ factor in the
theoretical model, is affected by the club being used. The dip is most pronounced for
the longest club, the driver, and reduces with club range. The experimental data of
the study, as modelled by the function of Equation 3, showed an average reduction
of 37% between driver and 5-iron, with swings with the seven iron showing a further
reduction. This phenomenon can be explained by suggesting that the hub position
for the downswing changes with club. The shorter the club, the closer to the spine is
the hub position. Swings with a pitching wedge should be made with the hub very
close to the spine, while putting is an action that is best carried out with the spine as
hub held stationary.

Leadbetter [9] refers to two axes of rotation. For the right-handed golfer, he describes
the axes as follows:

Imagine a line drawn down the inside of your right shoulder, through your right hip
joint and past the inner part of your right thigh into the ground. Now imagine the
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same line travelling down the left side of your body. These are the two axis points
around which every athletic swinger rotates, back and through.

The experimental data of this study certainly supports Leadbetter’s assertion, and
goes on to suggest that the position of the hub most certainly varies from club to
club, with the hub of the low irons being closer to the spine than the hub of the
woods. The golf coach, therefore, should expect a player to exhibit a certain degree of
reduction in VGR at the moment of impact, and may want to encourage the player to
increase/reduce this effect depending on the level of reduction exhibited and the
club being used.
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MATHEMATICS OF THE HUMAN ENGINE - EVALUATION OF POWER AND
ENDURANCE

R Hugh Morton!

Abstract

The human body is often used as a source of mechanical power, mainly in sport
and recreation. In the relentless pursuit of the ultimate and in bona fide scientific
research, it is natural to ask about the capacity, power and endurance of this
engine. Mathematical modelling of the system, together with experimental data
collection and analysis provides us with many insights. This paper examines some
models of human bioenergetics, describes some typical experiments undertaken in
an exercise laboratory, and discusses some applications where the human engine
is used.

1. INTRODUCTION

As a mathematician and statistician interested in sport, I am often asked what on
earth mathematics or statistics has to do with sport. Through regular practice I am
now able to successfully defend my position against all but the most sceptical
enquirer. Today however I am preaching to the converted, and the fact that this
meeting is the third in what has become a regular and successful series on
Mathematics and Computers in Sport is testimony to my views. I wish to share with
you some of the recent work on the modelling of the human bioenergetic system to
which I have contributed. I shall of course not confine myself to mathematics, but
will include brief details of some of the experiments exercise physiologists typically
undertake in their laboratories as a means of studying these properties of this
powerhouse of energy, and make mention of some of the interesting applications of
this most fascinating of engines.

In particular, and with a focus on human performance, I am interested in what
power the engine can develop, what its” endurance capability is at various tasks, and
how we can modify the engine for increased performance. In a mathematical
approach to these questions, one comes face to face with problems regarding the
fuels available to the engine, the methods of “burning” them, the capacities of the
fuel tanks (not to be confused with the capacity of its stomach, or volume of its
cylinders!), its control system, the self preservation of the organism, measurement of
the parameters of the system, etc. I shall not avoid these matters either. However, my
time is limited, and I must be both selective and succinct yet allow some time for
questions and discussion.

1Department of Statistics, Massey University, Palmerston North, New Zealand
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2. MODELLING THE SYSTEM

The basic chemical fuel for muscle contraction is adenosine tri-phosphate (ATP)
which splits into adenosine di-phosphate (ADP) and P, releasing energy. It is
available in situ in limited quantities, and so for continued contractions the ADP and
P must be recombined into ATP. This is achieved anaerobically by consumption of
either creatine phosphate (CP) or glycogen (the stored form of carbohydrate). CP is
immediately available in situ also, and is a “high octane” fuel. It exists in limited
amounts and resynthesis occurs rapidly but only after exercise ceases. Significant
amounts of glycogen are available, though less promptly, both in situ and from other
storage locations. It is also a “high octane” fuel, but anaerobic glycolysis is
chemically inefficient and produces lactic acid as an undesirable by-product. The
resynthesis of glycogen is a rather slow process, taking several hours, or even days if
depletion has been severe. The resynthesis of ATP can also be achieved aerobically
either by the combustion of glycogen, which is chemically much more efficient and
does not produce lactic acid, or by the combustion of fat. Aerobic glycolysis is a less
prompt mechanism, taking about three minutes or more to stabilise. The oxidation of
fat is considerably slower still, and is really only significant in exercise durations of
two or more hours. Figure 1 shows a schema of basic muscle bioenergetics.

Energy demand Energy supply |
by working from fuel
muscle sources
A
ADP +P
ATP

Figure 1: The cyclic breakdown and resynthesis of ATP

Mathematical models of the human bioenergetic system can therefore be based either
according to the type of fuel utilised, or the mechanism by which it is consumed, or
by a combination of both. In any model, certain other functional assumptions also
need to be made, as we shall see. The remainder of this section investigates three of
the rather few attempts that have been made to model the whole system as a single
entity.

The first model was proposed as a result of observing a close linear relationship

between the total work, W, performed at constant power by a cyclist exercising to
exhaustion, and the time, t, taken to achieve that work (Monod and Scherrer [3]).

W=o +1vt (1a)
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Since at a constant power P, W = P.t, this equation has various mathematically
equivalent alternatives

P=o/t+7y (1b)
t=oa/(P-7) (1c)
W=aP/@P-Y) (1d)

Given the errors of measurement in P, t and W in any practical setting, it is hardly
surprising that these equations are not statistically equivalent, and when fitted to the

same data can produce different estimates of o and 7. Intuitively equation (1c)
represents the most natural choice of dependent and independent variables, and in

fact does produce physiologically more reasonable estimates for aand 7.

The model therefore proposes the following:

1. There exists a fixed anaerobic energy store o (called the anaerobic work
capacity, AWC) which can be used sparingly over a long period of time, or
lustily over a shorter period. When this store is fully depleted, the cyclist
becomes exhausted and ceases exercise.

2. This store is supplemented by a continuous aerobic supply, the rate of which is
bounded above by 7y (called the critical power, CP). Clearly if the power
demanded is P <, then the notion of exhaustion is vacuous.

Thus for any constant P > v, equation (1c) and the other forms can be very readily
deduced. This model formulation is referred to as the CP concept Hill [2], and has
been extensively studied. The concept, although obviously a simplification, has
withstood much of this investigation remarkably well, at least over a range of times
from 2 to 20 minutes.

What has been frequently observed though, is that athletes cycling exactly at a power

P =v, have not been able to continue exercise for very long, 25 - 40 minutes, before
becoming exhausted. Concomitantly their fuel stores have not been found to be fully
depleted at exhaustion. Work-time data taken over a wider range of times, dips

below W = a + yt towards the origin for very short supramaximal exercise, and dips
somewhat below for much longer times also. Clearly therefore this model needs to
be reworked. This can be achieved from different perspectives (Morton [7]).

Equation (1c) is a rectangular hyperbola with the vertical asymptote estimable at

P =y, and the horizontal asymptote fixed at t = 0. If we relax this requirement,
allowing both asymptotes to be estimable, we can write

t=a/(P-v)+k )
Fitting this to data results in higher estimates for o and lower estimates for v, both of

which are in the direction expected from improvements consequent on the problems
described above. Estimates of k are found to be significantly less than zero. This
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means that equation (2) intersects the P axis at say P* when t = 0. This can be
interpreted physiologically as a "maximum instantaneous power". Furthermore it
can be shown that at exhaustion this model formulation allows for not all of the
anaerobic work capacity to be depleted.

This last model property raises an intriguing question, for it can also be shown that
at exhaustion after short supramaximal exercise, more of the anaerobic work
capacity remains untapped, than at exhaustion after long duration lower intensity
exercise. Could this be indicative of an endogenous self-preservation mechanism of
the human organism?

One can reach equation (2) from a completely different starting point. Let us suppose
that the maximum power that could be delivered at any instant depends on the state
of the fuel resources at that instant. Specifically, if the anaerobic work capacity is

fully charged, P* can be delivered, while if it is completely depleted, only y can be
delivered. Letting this maximum decline linearly from P* to y as the anaerobic work

capacity depletes from o to zero, equation (2) and all its interesting properties, can be
derived. In so doing, a useful definition of exhaustion can be deduced; the point at
which the maximum power that could be delivered equals the power required, ie the
inability (just) to meet the power demand.

Figure 2 shows a comparison of equations (1c) and (2) fitted to the same data.
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Figure 2: The two and three parameter hyperbolas fitted to data from an exercising subject
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A more complex hydraulic anologue model of whole-body human bioenergetics has
been proposed Morton [4] and [5], which makes an attempt to separate the ATP
replenishment systems both accordmg to the type of fuel used and the mechanism by

\—-I

7
2

3

Figure 3: The three component hydraulic model of human bioenergetics

Vessel O, of "infinite" capacity, representing the oxidative energy source is connected
to vessel P, representing the alactic (creatine phosphate) energy source, through a
tube R;. R; has a maximal flow M, known as the maximal oxygen uptake,

frequently denoted VO, .. . Vessel P has an assumed height H = 1 arbitrary unit, a
volume Vp and a cross sectional area Ap arbitrary units.

The height of the base of vessel O above the base of vessel P is denoted ¢, and hence
the constant height of fluid in vessel O above R is 1-¢. A tap T, at the base of vessel P

regulates the net outflow W from the system, where W represents the measured
energy expenditure, power, or workload. Vessel G, representing the glycogen store,

is connected at its base to P, by a tube R, at a height A above the base of P. Vessel G
has a finite fluid volume V and R, has a maximal flow M. The top of vessel G,
except for a very narrow extension tube B, is at a level 6 below the fluid level in

vessel O. The fluid in B represents resting blood and tissue glycogen and does not
contribute in measurable amount to the net flows in the system. Vessel G therefore

has a height of 1 - 0 - A, and a cross sectional area A arbitrary units.

The model operates as follows. Suppose tap T is opened to allow a net outflow W.
This induces a drop, h, in the level of fluid in vessel P. This in turn induces a flow
from O to P through R;. This flow, representing a rise in net oxygen consumption, is

in accordance with the ratio of & to 1 - ¢, equalling the maximum M  when h equals

(or exceeds) 1 - ¢. If W is small, then h will reach an equilibrium position, no greater
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than 6. This corresponds to a steady state oxygen uptake, VO,.. If T is closed at any
time, the level in P will return to its resting level, by virtue of a decreasing flow
through R;. This flow ceases when h equals zero, and corresponds to the repayment
of the alactic oxygen debt.

If W is of sufficient magnitude, greater than a threshold value Wy known as the

anaerobic threshold (AT), then after a while & will exceed 6, in which case a net flow
from G to P is then also induced. This flow, which represents glycogen depletion and
the anaerobic production of lactic acid by the working muscles, is in accordance with
the difference in levels between vessel G (an amount g below the top), and vessel P,
with the level in G dropping also but lagging behind the level in P. If T is closed, P
will be refilled, initially from both O through R; and from G through R,. This
continues only until the lag in levels between G and P has been eliminated. This brief
phase represents partial repayment of the alactic oxygen debt by contracting an
increased lactic oxygen debt, known as delayed or post-exercise lactate formation.
Thereafter P refills by a decreasing flow through R; and G in turn refills by a flow
through the return tube Rj. The flow through R; is also in accordance with the
difference in levels between P and G. The maximal flow through Rj3, Mg, is very
much smaller than M or M. Ultimately both the lactic and alactic oxygen debts will
be repaid. Once again, if W had not been too great, an equilibrium level with
h <1-Xand VO, <M/ (1-A)(1-¢) could have been achieved, by which time the
early lactate flow through R, would have ceased. If T is closed after equilibrium has

been reached, there would be no delayed lactic acid formation and both P and G
would be refilled immediately, through R; and R,, respectively.

If W is of even higher magnitude, demanding an energy expenditure in excess of
M, (1-2)(1 - ¢), then after a further while h will exceed (1 - ¢). In this event, VO, will
remain constant at VO, and the flow through R, will persist. Since G is of limited
capacity, it will later become empty, and so too may P. The subject would then have
depleted his energy stores, and would no longer voluntarily be able to maintain
exercise at this level. Once T is closed, repayment of the lactic and alactic debts will
be very similar to that described above, except for the absence of post exercise lactate
formation and for the fact that initially VO, will be constant at VO, .. until such

timeas h<1-9¢.

Various assumptions about how the development of maximum power may depend
on availability (or depletion) of fuel stores can be investigated. It turns out Morton
[5] that an association between power limitation and the amount of fluid remaining
in vessel G produces the most realistic predictions when compared to available
experimental data for the two most common forms of W; W = constant and W = rt
(the linear ramp).

More generally speaking, the mathematics of this model has given insight into the
mechanisms of whole-body human bioenergetics, and a number of its earlier
predictions have since been empirically verified. For example, a second exponential
component to VO, starting about a minute or more into exercise was discovered

empirically by Barstow et al [1]. Also the flow through R, can be linked to a 2-
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compartment (muscle and blood) diffusion model due to Zouloumian and Freund
[8] in order to relate predictions about blood lactate to the existing wealth of such
data. Simulation studies suggest consistency with these observed data.

However, this hydraulic model is again a simplification of the real world. In
particular it omits the oxidative consumption of fat, which would require another
(large volume) compartment, F, and some regulatory device controlling allocation of
oxidative mechanism between F and G. Some time I should get around to some work
on this!

3. EXPERIMENTS

The simplest type of endurance experiments require the subject to exercise to
exhaustion at a fixed power output on the cycle ergometer. Typically four or five
minutes of light exercise is allowed as a warm-up before starting, and heart-rate and
oxygen consumption are measured continuously during the experiment. Near the
exhaustion point, subjects are usually exhorted verbally to continue as long as
possible, and the end-point is usually reasonably precipitous. Immediately thereafter
a cool-down period is allowed before the data collection is terminated. The power
output and endurance time recorded form the basis for data such as displayed in
Figure 2. Total work W = P.t can be calculated for use in the other equations if
required. In some cases, blood lactate data is also collected for anaerobic threshold
determination.

It is common also for experimental sessions to involve work on a step wise
incremental protocol. Typically the power output is raised by say 30 to 50 watts
every third minute until exhaustion. With electronically controlled cycle ergometers
a true ramp P = rt can be closely approximated, with power adjustments of the order
of 0.5 watt per minute. Equations (1) and (2) can be modified to study endurance
data for a series of ramp tests with differing r (Morton [6]).

For the hydraulic model, due to its complexity, much more detailed experimentation
is required to obtain a basis for estimation of its parameters.

Of course, exercise is not restricted to cycling. The ideas transpose easily to rowing,
running, swimming, kyaking, weightlifting; or to any form of exercise where power
output can be measured in some way.

4. APPLICATIONS

One application which readily springs to mind is human powered flight. Here the
engineers have designed an aircraft with very precise requirements to get it airborne
and maintain it aloft for some period of time. Getting this matched to the power of
the human engine has taken some time to achieve. The two best known flights are
the crossing of the English Channel by the Gossamer Albatross, and the retracing of
the mythical flight of Daedalus and Icarus from the island of Santorini to the Greek
mainland. Both were achieved by teams from the USA, though the latter did end in
the breakers rather than on dry land!

Another application is the Colorado Speed Challenge, where a large prize is
available for the first human powered bicycle to exceed 70 mph over a 200m
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distance. There are various rules to the contest of course, but the human engine has
yet to meet the design requirements of the latest in bicycle technology. The prize is
within reach, with over 68 mph being achieved two years ago. (Olympic cycle
sprinters reach speeds of a little over 60 kph.)

[1]

[2]

[3]

[4]

[5]

[6]

[7]
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FORMATION OF NETBALL TEAMS FOR A SERIES OF TRIAL MATCHES

David H. Noble!

Abstract

Until recently, in order to choose the best netball team to represent Victoria at
primary school level, selectors organised a series of trial matches during which
they could evaluate players’ performances. The selectors wished the teams for
these matches to be of roughly equal ability and to place players in their preferred
positions wherever possible. In order to do this, players were required to nominate
three positions, in order of preference, in which they would like to play. In
addition, the organisers assigned each player a rank based on previous ability.
These ranks were then used in combination with the expressed player/position
preferences to manually form teams according to a set of rules. The organisers
now have at their disposal a user-friendly computer program whose core is a
linear programming assignment algorithm. This achieves their objectives in a
fraction of the previous time and also enables them to cater for last-minute
changes that often occur to the database.

1. INTRODUCTION

Until recently, the Victorian Primary Schools Sports Association (VPSSA) organised a
series of netball trial matches twice a year in Melbourne aimed at selecting a team to
represent the State at the Australian championships held once a year. Approximately
80 players from primary schools within Victoria were nominated by their schools for
consideration by the selectors in these trial matches.

The following information was provided for each player:
name, school, height, rank and preferred positions.

Rank

Players were given a rank (from 1 to 4) by the organisers, usually on the basis of their
performance at previously-held zonal (sub-State) trials. Rank 1 players were the best
players.

1School of Mathematical Sciences, Swinburne University of Technology, Hawthorn Vic 3122
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Preferred Positions
There are 7 positions in a netball team:

GS Goal Shooter,
GA Goal Attack,
WA Wing Attack,
C Centre,

WD Wing Defence,
GD Goal Defence,
GK Goal Keeper.

Each player was required to nominate three positions in order of preference.

2. FORMATION OF TEAMS

On the day of the trials, three rounds of matches were played. Prior to this
investigation, the organisers formed teams manually using different sets of rules for
each round, as described below:

In the first round:

1.  Assign all rank 1 players their first preference if possible, otherwise their
second preference and failing that their third.

2. Repeat for players of rank 2, then rank 3 and finally rank 4.

If the number of players participating in the trials was not a multiple of 7, those
players who had not been assigned a position were classified as “emergencies” and
were allocated across teams. They were interchanged with other players during the
course of the matches.

In the second round, the rules were modified to take account of how well preferences
had been satisfied in round 1. Players were assigned to their preferences in the
following order:

1.  those who ended up as emergencies in round 1,
2. those who were not placed in any of their preferred positions in round 1,
3. those who were allocated their third preference in round 1,

4.  all remaining players in order of rank (rank 1 first) — but to a different position
to that assigned in round 1.

Again, players not able to be assigned a position in this way bacame emergencies.

For the third and final round, the organisers selected the best 22 to 24 players based
on their performances in rounds 1 and 2. These players then competed in a series of
round-robin matches after which the team to represent Victoria was chosen. The
programme described in this paper was not used for this final round of matches.
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It will be noticed that the information on player height does not feature in any of the
rules given above. This information was generally only used by the organisers when
they could not otherwise decide which player should occupy a particular position.
Certain positions (GS, GA, GD and GK) are generally allocated to the taller players.

Note also that it was possible that the set of preferences expressed by all the players
could lead to a solution where a high ranking player was not assigned any of her
three preferred positions (eg. if all top players preferred the same positions).
However, this had not happened in practice. Should it have done so, the organisers
were sufficiently confident that they would have been able to alter the expressed
preferences so that an outcome, acceptable in the circumstances, could have been
obtained. Players who prefer certain positions usually do not dislike playing in
certain other positions.

Because the team formation process was carried out manually, essentially by trial
and error, there was no guarantee that the best solution was obtained. Additionally,
on the day of the trials, it often happened that one or two players did not turn up
due to illness or other reasons, while other players, not previously notified to the
organisers, turned up in the hope of inclusion. The organisers were therefore faced
with a significant amount of manual re-adjustment just at a time when other
organisational matters were at a peak. For these reasons, the availability of a user-
friendly computer program that could produce teams that satisfied their
requirements was a major help.

The core of this program is a linear programming assignment model which assigns
players to positions for round 1 and round 2 in turn. However, in either round, this
can result in a solution where there is an imbalance in the abilities of the various
teams, ie. most of the good players can end up in the same team. Since the organisers
used the matches to assess the ability of the players they did not wish this to happen
and wanted teams to be of comparable strength. A smoothing algorithm which
maintained the optimality of the solution was therefore added to reduce the
imbalance between teams.

In the following, the formulation of the core linear programming assignment model
(as applied to round 1) is explained first. A numerical example illustrating the
working of the core model for a seven player - seven position problem is given. The
adaptations required to handle the round 2 rules are then explained and this is
followed by a description of the smoothing algorithm. The paper concludes with a
short discussion of how alternative equally good solutions were generated. This
additional facility was requested by the organisers once confidence in the initial
program was achieved.

3. MODEL FORMULATION

In the general case, N players are assigned to M = INT(N/7) teams with E = N - 7*M
emergencies left. The problem can be formulated as an unbalanced linear
programming assignment problem which is balanced by the creation of E emergency
positions. When E = 0, the problem is already balanced.
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The formulation is as follows:
Number the players 1,2, ...... N.

Number the positions 1,2, ...... N with team k consisting of positions 7k — 6, 7k - 5,
..... , 7k and the E emergencies being positions N-E+1, N-E + 2, ..., N.

Then

N N
minimise Z = 22 Py Xj

i=1 j=1

where X; = 1  ifplayeriis assigned to position j,
= 0 otherwise,

Pj = a numerical score reflecting both the rank of the player and the
preference of player i for position j (calculation of this score is
described in more detail below)

subject to
N
Y, Xy=1forj=1,2, ..., N 1)
=1
N
2 Xj=1fori=1,2,...,N @
j=l

Constraints (1) and (2) are the usual constraints found in the linear programming
assignment problem. For this problem, they ensure the one-to-one assignment of
players to positions.

4. CALCULATION OF NUMERICAL SCORES REFLECTING RANK AND PREFERENCES

The model formulated above allows players of all ranks to “compete” with players of
all other ranks for positions. This is in contrast to the manual solution method which
takes players one rank at a time.

It would be possible to apply the above model to each group of ranked players
separately, starting at rank 1 and “removing” the positions assigned to these players
from the problem before the next rank of players is assigned their position. However,
it was decided that this was a bit cumbersome and so a set of numerical scores was
developed for each player’s preferred positions which would ensure, as far as
possible, that the manual rules were observed.

It was also recognised by the organisers that some of the rules existed because of the
manual nature of the team formation process and that, in some circumstances, these
would not be strictly enforced as the manual process proceeded. It was agreed that,
provided the underlying objectives of the rules were achieved by an automatic
process, this would be acceptable.
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The logic behind the development of the numerical scores is as follows:
Let the scores assigned to the 3 positions preferred by a player of rank r be
ar,ar +d;and a,+2d,.

It is assumed here that the "disappointment" experienced by a player when allocated
her 2nd preference rather than her 1st is the same as when allocated her 3rd
preference rather than her 2nd.

In addition, let the numerical score assigned to the 4 positions not expressed as
preferences by a player of rank r be D,, where D, is some value of an order of
magnitude greater than ar + 2d, , and is sufficiently high to dissuade allocation of an
emergency position except "in emergencies".

In the Hungarian method of solution of assignment problems (Kuhn [1]), the first
step is to subtract the minimum value in each row of the objective function matrix
from all other values in that row. If we consider players as rows and positions as
columns, the minimum value in each row will be a,. Subtraction of this from the
other values will result in values of 0, d; and 2d, for the preferred positions and
D; - a, for each of the positions not preferred. It is sufficient therefore to consider
only what are appropriate values for the d; and the set of differences (D; - a;).

Taking the d, first, it can immediately be seen that to ensure that a player of rank r is
given her first preference before a player of rank r + 1, we must have

dl‘>d1‘+1 ,1SI‘S3.

However, reference to the example illustrated in Table 1, where three players are
competing for three positions reveals that, in fact, we must have d, > 2 d,4; , since
otherwise a solution other than the one desired would be obtained. In this example,
player 1 (of rank r) is competing with players 2 and 3 (both of rank r+1). The desired
assignments are indicated by asterisks (*).

To ensure player 1 is assigned position 1, we must have

3dr+1 < dr + dr+1

ie. dr > 2 dr+1 (3)
Table 1. Player/position preference scores ( * indicates desired assignments).
Position
Rank 1 2 3
r *0 dr 2dr
Player 2 r+1 0 *2d .41 dri1
3 r+1 0 2d;41 *dry

For 3 players and 3 positions, there are a number of different scenarios that could
exist for player/position preference scenarios. The one illustrated in Table 1 requires
the largest d,/d 41 scaling factor. Extending such an investigation to N players and N
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positions becomes extremely complicated and in the end an arbitrary scaling factor
for the d,’s was used, as will be explained at the end of this section.

Turning now to the determination of suitable values for the set of differences
(Dr — a;), it would be attractive from a coding point of view to have D, =D Vr, for
then the matrix of scores could be initialised to this value and only the scores
corresponding to the preferred positions changed as the data is read in.

To ensure that a player of rank r is assigned at least her 3rd choice in preference to
any player of rank r+1, we must have D —a;y; < D - (ar + 2d,), where the term on the
left of the inequality reflects the fact that some players of rank r+1 could have given
the position being contested as their first preference.

To achieve this, it is sufficienttoset ary; = a,+3d,,r>0,
a; = 0.

Thus, all that remains is to decide on the specific values of d; to be used. If we wish,
for neatness sake, to keep all the d, values integer, it follows from (3) that the
minimum values that they can takeareds =1,d3=3,d> =9,d; =27.

In fact, the values used in the analysis were
ds =1,d3=10,d, =100, dy = 1000.

These values were chosen for two reasons. Firstly, it made examination of the
solution easier and secondly it gave peace of mind in case there were any scenarios
that had not been considered when investigating possible player/position preference
score combinations. Examination of the solutions produced so far have not revealed
any undesirable features.

The complete set of a; and d; values used in the model is shown in Table 2.

Table 2. Numerical scores used to generate the P; matrix.

Preferred positions
Rank First Second  Third

0 1000 2000
3000 3100 3200
3300 3310 3320
3330 3331 3332

B W N -

5. NUMERICAL EXAMPLE

The following illustrates the use of the model to assign 7 players to 7 positions. Table
3 shows the ranks, preferred positions (in order) and the numerical scores assigned
these positions for each of the 7 players. Positions which are not preferred are given
a numerical score of 99999 but these values are not shown in the table. In the
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example, no player has a first preference for WA or C, while 2 players have a first
preference for GS and 2 for GA.

Table 3. Matrix of player and position scores for example problem.

Player = Rank Preferred Position scores

positions GS GA WA C WD GD GK
1 1 GS, GA, WA 0 1000 2000 - - - -
2 1 GA,C,GD - 0 - 1000 - 2000 -
3 2 WD, GD, C - - - 3200 3000 3100 -
4 2 GK, WD, WA | - - 3200 - 3100 - 3000
5 3 GA, WA, C - 3300 3310 3320 - - -
6 3 GS,C,GD | 3300 - - 3310 - 3320
7 4 GD,C,GS 3332 - - 3331 - 3330 -

The optimal solution is found and is shown in Table 4. Both the rank 1 players and
both the rank 2 players get their first preferences. Both rank 3 players only get their
2nd preferences. This is because player 5’s first preference (GA) and player 6’s first
preference (GS) have already been assigned to better players. Player 7, the only rank
4 player, is lucky. No-one else has given GD as a first preference and, although 3
players have given GD as a 2nd or 3rd preference, they have all been assigned a
position higher in their order of preferences, so player 7 gets her first preference.

Should player 6's preferences be changed to GS, GD and C in that order, ie. GD is
now her 2nd preference rather than C, then the model gives the GD position to
player 6 in preference to player 7 who in turn is now given her 2nd preference (C).

Table 4. Optimal solution for example problem.

Player Rank Preferred Position scores
positions GS GA WA C WD GD K

1 1 GS, GA, WA 0 | 1000 2000 - - - -
2 1 GA,C,GD - 0 - 1000 - 2000 -
3 2 WD, GD, C - - - 3200 | 3000 | 3100 -
4 2 GK, WD, WA | - - 3200 - 3100 - ]3000
5 3 GA, WA, C - 3300|3310 3320 - - -
6 3 GS,C,GD 3300 - - 3310 - 3320

7 4 GD,C,GS 3332 - - 3331 - 3330 -

6. ROUND 2

All that is required to be able to apply the model to round 2 is to change the ranks
and preferences of the players to reflect the round 2 rules.

Thus, seven ranks are required for round 2 - reflecting the seven round 2 rules
(round 2 rule 4 in reality consists of four rules, one for each of the original ranks) and
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those players assigned a round 2 rank of 4, 5, 6 or 7 will have one of their preferences
removed (the position they were allocated in round 1).

Once these modifications have been made, the model can be re-applied to the new
set of data.

7. SMOOTHING ALGORITHM

A measure of the collective ability of a team can be obtained by summing the ranks
of the seven players allocated positions in that team (ie. excluding any emergencies)
to obtain a total team rank. Without smoothing, unacceptably large variations can be
obtained in the total team ranks.

Some thought was given to modifying the model in order to even out total team
ranks by incorporating a quadratic term in the objective function to express the sum
of squared deviations of total team ranks from the average. However, incorporation
of such a non-linear term would have greatly increased computation time. An
alternative method was therefore used whereby smoothing was performed once an
-optimal allocation of players to positions had been obtained. This smoothing
algorithm did not change the position that a player was allocated but could change
their team, thus maintaining the optimality of the solution. It has proved quite
acceptable in finding solutions where total team ranks are either the same or within
one of each other. It is described below.

Step1:  Calculate all team ranks.

Step2:  Identify the teams with the largest and smallest team ranks (teams A and
B respectively).

Step 3:  Calculate the difference, d, in the team ranks of teams A and B, and if d <1
stop, otherwise

Step4:  Calculate D = min{int(d/2), 3}

Step 5:  Taking each position in teams A and B in turn, look for a rank difference
equal to D. Here we are hoping to find a swap which will even out the
team ranks of teams A and B. The maximun difference in rank that can
occur in round 1 is 3 (this is replaced by a value of 6 when smoothing
round 2 teams).

Step 6:  If such a rank difference is found, swap the two players between teams A
and B (retaining their positions), recalculate the team ranks of teams A
and B and then return to Step 2.

If not, reduce D by 1 and, unless D = 0 (see below), return to Step 5.

It is possible, during the search for a suitable position on which to perform a swap,
that the value of D reaches 0. This occurs, for instance, when 6 of the 7 positions in
teams A and B have equal rank but there is a difference of 2 (or 3) in the rank of the
7th player. Thus, here d = 2 (or 3), the initial value of D is 1 and no position is found
where this rank difference occurs. To overcome this problem, the algorithm replaces
team A by the team with the next highest team rank and repeats from Step 3. A flow
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chart illustrating the working of the algorithm is shown in Fig. 1 and the stage-by-
stage smoothing of a sample set of five teams is shown in Table 5.

8. ALTERNATIVE SOLUTIONS

From a strict linear programming point of view, there are a multitude of alternative
optima for each round, since for each position in an n-team problem there will be n!
ways in which the n players who have been allocated to this position in one optimal
solution can then be allocated to teams.

However, the organisers did not wish alternative solutions in which players retained
their positions (but swapped teams). They wanted alternative solutions in which
players were given different positions. By experimentation, it was found that, if the
data was sorted in different ways prior to feeding into the model, the sort of
alternative solutions the organisers wanted could be generated. The programme
handed over to the organisers allowed them to select one of four ways in which to
feed the data to the model

in order of initial storage in the datafile,

in alphabetical order of first name,

in alphabetical order of second name,

in order of rank (and within rank, in original stored order).

As a rule, selecting all four options one after the other would result in two or three
alternative solutions being generated. Typically, most of the player-position
allocations in these solutions would be identical and contain only a small number of
permutations of two or three player-position allocations.

Alternative solutions are generated for both rounds 1 and 2 in this way. Before
calculating any solution for round 2, a method for calculating round 1 has to be
selected, since the ranks and preferences used in round 2 depend on the solution
chosen in round 1.

9. PROGRAM

The program delivered to the organisers was written in Visual Basic v3.0 to allow
ease of input and editing of data. Forms were also created to allow selection of which
round to provide solutions for and which alternative method to use to produce a
solution. Command buttons were provided to allow output of the solution to a
printer or a file.

10. CONCLUSION

As a result of this research, the organisers were provided with a user-friendly
computer program which achieved their objectives in a fraction of the time that the
manual method took. They could also use the program to cater for last-minute
changes that occurred to the database.
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Figure 1. Flowchart illustrating the smoothing algorithm.
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Table 5. Stage-by-stage illustration of the smoothing algorithm.

Initial solution.

Position Team1 Team2 Team3 Team4 Team5

GS 4 3 2 2 3
GA 3 2 1 4 4
WA 3 4 3 3 2

C 4 3 2 2 4
WD 3 1 4 3 1
GD 3 3 1 1 2
GK 2 4 2 3 4
Team rank 22 20 15 18 20

Stage 2 solution.

team A =team 1,

team B = team 3,

d=7,

For D = 3, no position is found,
For D = 2, position GS is found,
Swap on position GS to form

new solution.

team A =team 1,

team B = team 3,

d=3,

For D =1, no position is found
so team A = team 2,

For D =1, position GA is found,

Swap on position GA to form

Position || Team1 Team?2 Team3 Team4 Team5

GS 2 3 4 2 3
GA 3 2 1 4 4
WA 3 4 3 3 2

C 4 3 2 2 4
WD 3 1 4 3 1
GD 3 3 1 1 2
GK 2 4 2 3 4

Team rank 20 20 17 18 20

new solution.

Stage 3 solution.

team A =team 1,

team B = team 3,

d=2,

For D =1, position GA is found,
Swap on position GA to form

new solution.

Position || Team1 Team?2 Team3 Team4 Teamb5
GS 2 3 4 2 3
GA 3 1 2 4 4

WA 3 4 3 3 2

C 4 3 2 2 4

WD 3 1 4 3 1

GD 3 3 1 1 2

GK 2 4 2 3 4
Team rank 20 19 18 18 20
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Stage 4 solution.

Position Team1l Team?2 Team3 Team4 Teamb5

GS 2 3 4 2 3 team A = team 5,
GA 2 1 3 4 4 team B = team 4,
WA 3 4 3 3 2 d=2,
C 4 3 2 2 4 For D = 1, position GS is found,
WD 3 1 4 3 1 Swap on position GS to form
GD 3 3 1 1 2 new solution.
GK 2 4 2 3 4
Team rank 19 19 19 18 20

Final solution.

Position || Team1 Team?2 Team3 Team4 Teamb5

GS 2 3 4 3 2
GA 2 1 3 4 4
WA 3 4 3 3 2
C 4 3 2 2 4
WD 3 1 4 3 1
GD 3 3 1 1 2
GK 2 4 2 3 4

Team rank 19 19 19 19 19
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HOME ADVANTAGE IN BALANCED COMPETITIONS - ENGLISH SOCCER
1991-1996

Stephen R Clarke!

Abstract

This paper discusses the calculation of home advantage for individual clubs in any
competition where each team plays each other at home and away. Simple
formulae can be applied to the final ladder to produce home advantages for the
individual teams. The method is used on a spreadsheet with data obtained from
the internet. Home advantages of all clubs in the English soccer league from 1991-
1996 are calculated and compared with previously published figures.

1. INTRODUCTION

Home advantage is often discussed in sporting circles but not often calculated. While
the overall home advantage of the whole competition is often measured by the
percentage of matches won by the home teams, this is not an appropriate measure
for individual clubs. To correctly calculate the home advantage of individual clubs
strength of opposition must be allowed for, and is often difficult to assess because
the draw is not balanced. (AFL football is a case in point where in 1995 and 1996 16
teams play 22 rounds. Furthermore, ground sharing is common, and many matches
are moved to the MCG to allow for anticipated large crowds. This results in other
matches being moved to accommodate ground tenancy agreements). In such cases,
mathematical models need to be fitted to estimate team ability and home advantage.
Stefani and Clarke [1] do this for Australian Rules, Kuk [2] for English soccer and
Harville and Smith [3] for American basketball. However in cases such as English
soccer, where the draw is balanced so that each team plays each other team once at
home and once away, the analysis can be much simpler. In this case it makes sense to
separate home and away results, and this is the usual practice when presenting
English soccer tables. In this case, Clarke and Norman [4] give a method that
although equivalent to fitting a model to the individual match scores by least
squares, can be applied using simple arithmetic to the final ladder. This method is
applied to all results from 1991-92 to 1995-96, and results compared to previous
results.

2. THE METHOD

The idea behind the method is best demonstrated by a simple example. Suppose
there are 4 teams and the results of their matches are as in table 1. Margin totals for
home and away matches are also shown. Note that as all results are given as the

1School of Mathematical Sciences, Swinburne University, Hawthorn Vic 3122
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home team first, the column totals are in fact the negative of the respective team's
away performance.

Table 1 Sample results

Away  Team Total

1 2 3 4 Margin
1 - 32 40 6-1 10
Home 2 1-1 - 2-1 30 4
team 3 10 2-1 - 51 6
4 1-3 1-2 0-2 - 5
Total Margin -1 1 3 12 15

We model the winning margin w;; when home team i plays away team j as
wij =uj+hj —uj +ej

where u; is a measure of a team's ability, h; is team i's home advantage and ¢; is
random error. Since the u; are relative, we can require they sum to zero. We wish to
find the eight unknowns u; , h; . Clarke & Norman show that fitting a least squares
model to the original results gives the same result as fitting the expected values to
the marginal totals.

For example replacing the score in the above table with the expected margin we
obtain

Table 2: Expected results

Away  Team Total

1 2 3 4 Margin
1 - uit+h-us ui+hi-us ui+hi-ug 10
Home 2 uy+hy-u1 - ur+hy-us ur+hy-u 4 4
team 3 uz+hz-uq uz+hsz-us - uz+hz-uyg 6
4 ug+hg-u1 ug+hg-uo ugq+hg-us - 5
Total Margin -1 1 3 12 15

Adding all results we get 3 (h1 +hp +h3 +hg) =15, s0 H=h1 +hy +h3 +hg = 5.

Using the difference between team 1's home and away performance (ie adding first
column and first row) we get H + 2h7 = 9 so h1 = 2. For the other teams we get
hp=0,h3=2,and hy=1.

Now for team 1's home results we have 4 uj + 3 h1 = 10 so u7= 1. Similarly the ratings
for the other teams are 1, 0, and -2.

Note that team 2 has no home advantage, even though it has better results at home
than away. These are in fact due to the home advantage of the other teams.

In general, the formulae for N teams are
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H = total home goal difference of all teams /(N-1)
h; = (home goal diff for team i - away goal diff for team i - H)/(N-2)
u; = (Home goal difference for team i - (N-1)h; )/N

These formulae are very easy to apply, particularly for English soccer where home
and away results are traditionally separated in the end of year ladder.

3. ENGLISH SOCCER 1991-1996

The final ladder results are archived on the internet from 1991 onwards. These were
copies and read into an XL spreadsheet. This spreadsheet was created using the same
form as the archive, with the above formulas used to calculate two additional
columns containing the u; and h;. It was only necessary to cut and paste a year's
results from the archive file to produce the us and hs. This was done for each division
and year. The result for the premier division of 1995-96 is shown in Table 3.

Table 3: 1995-96 Premier division

Team P W DL F A WD L F A Pt U h
ManchesterU| 38 15 4 0 36 9 10 3 6 37 26 82 0.98 0.39
NewcastleU | 38 17 1 1 38 9 7 5 7 28 28 78 0.40 1.11
Liverpool 38 14 4 1 46 13 6 7 6 24 21 71 0.54 1.16
Aston Villa 38 11 5 3 32 15 7 4 8 20 20 63 0.43 0.44
Arsenal 38 10 7 2 3 16 7 5 7 19 16 63 0.60 0.11
Everton 38 10 5 4 3 19 7 5 7 29 25 61 0.64 0.16
Blackburn R | 38 14 2 3 44 19 4 5 10 17 28 61 -0.17 1.50
TottenhamH | 38 9 5 5 26 19 7 8 4 24 19 61 0.72 -0.39
Nottingham F| 38 11 6 2 29 17 4 7 8 21 37 58 -0.40 1.05
WestHamU | 38 9 5 5 25 21 5 4 10 18 31 51  -0.22 0.44
Chelsea 38 7 7 5 3 2 5 7 7 16 22 50 0.14 0.27
Middlesbr. 38 8 3 8 27 27 3 7 9 8 28 43 -0.31 0.33
LeedsUnited | 38 8 3 8 21 21 4 4 11 19 36 43 -0.42 0.44
Wimbledon 38 5 6 8 27 3 5 5 9 28 37 41 0.02 -0.34
Sheffield Wed| 38 7 5 7 30 31 3 5 11 18 30 40 -0.15 0.11
Coventry C 38 6 7 6 21 23 2 7 10 21 37 38 -0.36 0.27
Southampton | 38 7 7 5 21 18 2 4 13 13 34 38 -0.64 0.83
ManchesterC| 38 7 7 5 21 19 2 4 13 12 39 38 -0.95 1.11
Queens PR 38 6 &5 8 25 26 3 1 15 13 31 33 -0.47 0.44
BoltonWand | 38 5 4 10 16 31 3 1 15 23 40 29 -0.38 -0.39
Totals 186 98 96 580 408 96 98 186 408 580 1042 0.00 9.05

Table 4: HAs of all teams 91-92 to 95-96

Team 9192 9293 9394 9495 9596 Avge
Arsenal 067 -014 -056  -0.07 0.11 0.00
Aston Villa 087 061 0.39 0.08 044 048
Barnet 1.01 1.30 0.64 092 057  0.89
Barnsley 018 056 -0.09 1.02 044 042
Birmingham City 0.49 0.29 0.13 0.64 1.03 0.52

Blackburn Rovers 0.59 0.36 0.34 0.78 1.50 0.71
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Blackpool

Bolton Wanderers
Bournemouth
Bradford City
Brentford
Brighton & Hove A
Bristol City

Bristol Rovers
Burnley

Bury

Cambridge United
Cardiff City
Carlisle United
Charlton Athletic
Chelsea

Chester City
Chesterfield
Colchester United
Coventry City
Crewe Alexandra
Crystal Palace
Darlington

Derby County
Doncaster Rovers
Everton

Exeter City
Fulham
Gillingham
Grimsby Town
Halifax Town
Hartlepool United
Hereford United
Huddersfield Town
Hull City

Ipswich Town
Leeds United
Leicester City
Leyton Orient
Lincoln City
Liverpool

Luton Town
Maidstone United
Manchester City
Manchester United

1.71
0.04
0.63
-0.06
0.63
0.41
0.82
0.96
0.31
0.31
0.09
0.46
0.51
-0.54
0.17
0.04
-0.09

0.32
0.06
-0.13
0.26
-0.27
-0.64
0.42
1.31
0.44
1.21
-0.04
0.36
0.26
0.86
0.40
-0.10
0.46
0.22
0.77
0.63
-1.09
0.92
1.97
0.26
0.72
0.17
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0.92
0.78
0.15
0.46
0.15
0.37
0.65
-0.17
1.10
0.90
0.15
0.30
0.50
0.15
0.31
0.33
0.20
1.25
-0.19
1.05
0.31
-0.95
-0.40
-0.25
-0.54
-0.22
-0.08
0.80
0.15
-0.75
-0.08
0.65
0.51
0.69
0.41
2.01
0.88
1.37
0.50
1.41
0.10
-0.29
0.16

0.42
0.31
-0.22
0.42
-0.40
0.64
0.41
0.10
1.92
0.80
0.05
0.64
0.10
0.86
0.99
0.20
0.30
0.20
0.39
0.20
0.13
0.35
0.95
0.10
0.34
1.01
-0.18
0.40
0.13
0.51
0.70
-0.27
0.32
-0.26
0.29
0.22
1.23
-0.10
0.49
0.81
0.44
0.19

0.23
1.16
0.14
-0.36
0.32
0.45
0.21
0.77
0.84
0.32
0.82
0.32
-0.23
0.52
0.08
0.00
-0.08
-0.13
0.23
0.23
-0.42
0.37
0.66
-0.38
0.68
0.17
0.97
1.07
0.71

0.97
0.72
0.41
1.00
1.38
0.48
0.38
0.91
0.82
0.63
0.02

0.98
0.83

0.16
-0.39
1.07
0.84
0.57
-0.03
0.25
-0.30
0.66
-0.15
0.39
0.80
1.52
-0.47
0.27
0.80
0.88
0.48
0.27
0.16
-0.15
-043
1.08
0.62
0.16
0.16
1.03
0.71
0.44

1.03
0.39
1.21
0.38
0.53
0.44
-0.38
1.07
0.85
1.16
0.35

1.11
0.39

0.69
0.38
0.35
0.26
0.25
0.37
0.47
0.27
0.97
0.44
0.30
0.50
0.48
0.10
0.36
0.27
0.24
0.45
0.20
0.34
-0.05
-0.08
0.40
-0.11
0.21
0.49
0.44
0.84
0.28
-0.20
0.54
0.66
0.45
0.46
0.50
0.69
0.37
1.04
0.20
0.92
0.65
0.26
0.59
0.35



Mansfield Town
Middlesbrough
Millwall

Newcastle United
Northampton
Norwich City
Nottingham Forest
Notts County
Oldham Athletic
Oxford United
Peterborough United
Plymouth Argyle
Port Vale
Portsmouth
Preston North End
Queen's Park Rangers
Reading

Rochdale
Rotherham United
Scarborough
Scunthorpe United
Sheffield United
Sheffield Wednesday
Shrewsbury Town
Southampton
Southend United
Stockport County
Stoke City
Sunderland
Swansea City
Swindon Town
Torquay United
Tottenham Hotspur
Tranmere Rovers
Walsall

Watford

West Bromwich A
West Ham United
Wigan Athletic
Wimbledon
Wolverhampton W
Wrexham
Wycombe Wanderers
York City
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0.11 0.74
0.96 1.11
-0.13 1.20
1.09 0.92
0.21 0.00
0.47 0.86
037 029
0.17 1.24
0.77 1.31
0.68 0.33
0.76 0.20
0.55 0.60
0.14 0.33
1.55 1.47
0.85 0.24
-0.08 0.01
0.13 0.96
0.51 0.50
0.06 -0.26
0.81 0.05
1.31 0.75
0.07 0.81
0.42 0.06
0.04 -0.05
-0.73 0.71
0.55 0.92
0.90 1.01
0.44 0.24
0.91 0.65
0.90 0.56
0.37 0.42
1.54 -0.10
-0.38 1.26
0.00 0.92
021 -0.05
-041 -017
0.58 1.01
0.47 0.65
0.81 0.06
0.77 0.36
0.27 0.42
1.06 0.65
0.61 0.85

-0.10
0.81
0.77
1.34
0.95

-0.81

-0.23
1.18
0.09
0.41
0.81

-0.13
0.55
0.36
1.00

-0.06
0.01
0.65
0.46
0.05
0.65
0.69
0.99

-0.45
0.44
0.18
0.69
1.00
0.77
1.14
0.34

-0.15

-0.46
1.00
0.10
0.45
0.50

-0.26
0.60
0.94
0.22
1.10
0.25
0.23

0.12
0.21
0.71
1.13
0.27
0.98
-0.12
0.21
0.61
0.05
0.00
0.05
0.25
0.16
0.72
0.43
-0.02
0.92
0.68
0.12
0.32
0.39
-0.07
0.59
0.23
1.02
0.45
0.48
-0.39
-0.05
0.39
0.72
-0.17
1.57
0.22
0.61
0.52
0.63
-0.28
0.38
0.61
0.55
0.50
0.32

-0.34
0.33
0.08
1.11
0.16

-0.38
1.05
0.29
0.62
1.25
0.97
0.62
0.03
0.17

-0.25
0.44

-0.15

-0.34
0.84
0.39

-0.15

-0.15
0.11
0.29
0.83
0.76

-0.25
0.67
0.44
0.93

-0.30
0.30

-0.39
0.62
0.43
0.62
0.44
0.44
0.66

-0.34
0.44
0.70
0.20
0.07

0.11
0.68
0.53
1.12
0.32
0.22
0.16
0.62
0.68
0.54
0.55
0.34
0.26
0.74
0.51
0.15
0.19
0.45
0.36
0.28
0.58
0.36
0.30
0.08
0.30
0.69
0.56
0.57
0.48
0.70
0.24
0.46
-0.03
0.82
0.18
0.22
0.61
0.39
0.37
0.42
0.39
0.81
0.32
0.42
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The columns for year, division, club, team rating and home advantage were then
copied into a single spreadsheet and to SAS/JMP for further analysis. Clarke and
Norman [4] gave the home advantage (HA) for all clubs for 1981-82 to 1990-91. Table
4 extends that through to 1995-96.

In general the results as reported by Clarke and Norman for the years 81-82 to 90-91
are repeated here. The average HA was 0.43 goal per match. The yearly HAs ranged
from -1.1 to 2.0 goals per match, with about 18% negative. However the average HA
over 5 years ranged from —0.11 to 1.1. Analysis shows that HA is not dependant on
division, nor year. However the team effect is significant (p = 0.0386). Of the 10 clubs
with the lowest HA, five are London clubs. Clearly the mean HA of 0.29 for the 13
London clubs is significantly lower than the mean HA of 0.44 for the 81 non-London
clubs. A surprising fact was the lack of consistency in the HAs from one year to the
next. The correlations between HA from one year to the next were very small or even
negative, while the correlation between the average HAs obtained by Clarke &
Norman and those here was only 0.15. This suggests that teams do not enjoy a large
HA over many years, and that opponents may quickly counteract perceived HAs

4. CONCLUSION

Calculation of individual team home advantages is rarely undertaken as it usually
involves complicated statistical fitting of mathematical models to individual results.
However in the case of a balanced competition, this is not necessary and can be
accomplished by simple calculations on the final ladder. This should be done on a
range of sports, as the reasons for variations in HA can then be investigated.
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THE “LEVELLER SYSTEM” TENNIS TOURNAMENT

Pam Norton’

Abstract

The leveller system tennis tournament is one which allows all players to
participate for its duration, and to find and play at their own level. The system is
examined for its potential to be computer-generated. The question to be answered
is: “What is the best method to generate the draw for a session given the results of
previous sessions if any?” Preliminary analysis only has been done.

1. INTRODUCTION

The “leveller system” tournament was developed by Ken Snell, formerly of Mildura,
to give country juniors as much competition tennis as possible. This type of
tournament has now been run by Waverley and Districts Tennis Association
(WDTA), in Melbourne’s southeastern suburbs, over three separate school holidays,
with more planned. The tournament is described as “a multi match tournament
draw which allows all players, irrespective of age or ability, to participate for its
duration”. The original idea is for good players in a particular age group to be able to
consistently play players of a higher age group, for girls to be able to play against
boys and vice versa, and for all players to play some players of a similar standard.
The “normal” standard junior tennis tournament is a single sex age group event,
sometimes being a round robin. If it is a knockout event, then half the entrants have
one match and have then finished. Round robin events usually last up to a day, and
the participants get probably four or five matches. So in a leveller tournament every
player gets to play from start to finish, regardless of their standard.

2. THE LEVELLER SYSTEM

The leveller system tournaments that have been run by WDTA have been held over
five days, from Monday to Friday, during school holidays. They could well be
marketed as a school holiday program! For the first four days singles matches are
played, with doubles on the Friday. The entry says “partners will be allotted by the
venue coordinator”; in practice, the venue coordinator asks the entrants to get their
own partner and let him/her know.

The main idea of the leveller system is that there are one or two preliminary matches
which sort the entrants into different groups, and then the players participate in a
round robin within the group. Prizes are awarded to the winners of each group. For
example, the simplest type would be a draw for eight people. The eight entrants

' Department of Mathematics, Monash University, Clayton, Victoria 3168
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would play one match; the winners would go into the draw for the Group A round
robin, and the losers to the Group B round robin. A draw sheet for such is given in
Figure 1. The final position of each competitor is determined by the number of games
obtained in the round robin, and all players in Group A will be positioned above all
players in Group B.

GroupA 1 2 3 4 Total

1

2
1 3
8 4
5
4
3
6 GroupB 1 2 3 4 Total
7 1
2 2
3
4

Figure 1: Draw sheet for Leveller System, 8 entrants.

The leveller system can be designed for any number of players; in practice, 40
players is close to the maximum. With forty players, there would be two preliminary
rounds to sort the players into four groups of ten, and then there would be two
round robins of five players each in each group, with the winners playing off. The
four sorted groups correspond to win-win, win-loss, loss-win and loss-loss in the
playoff rounds.

The first two days are defined as seeding days, whereby a specific cohort plays out a
leveller system in order to produce a ranked list of players. Traditionally, the first
day is a single sex competition day, with groupings depending on the numbers of
entries, but probably similar to 12 and under girls, 13 and over girls, 12 and under
boys and 13 and over boys. On the second day, the sexes are mixed, with a groups
consisting of, for example, 11 and under boys and girls, 12 and 13 year old boys and
girls, and the rest.

The third and fourth days are the days for the main singles events. The groupings
here, for example, are 11 and under boys and 12 and under girls, 12 and 13 year old
boys and 13 and 14 year old girls, and the rest.

3. METHOD OF SEEDING

There does not appear to have been any consistency in the way the original draws
have been produced. There are two examples now given, involving 12 and 13 year
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old boys in the April 1996 and July 1996 tournaments. For the April 1996
tournament, it is clear that initially there were eight seeds in this group, with
positions determined by information such as association, junior grade, senior grade,
pennant grade, and whether a McDonald’s or VCTA squad member. These seeds
were unchanged for the first two days. The results of day 2 were used to seed for the
main singles competition, consisting of 24 players. The final day’s play, a doubles
competition, was seeded on the results of the main singles competition. The seeds for
each session’s play and the positions at the end of each session are given in Figure 2.
An interesting mathematical question is: how many such sessions, where the players
are ranked at the end of one and the rankings given as seedings for the next, would
need to be held to end up with a correctly ranked list?

For the July 1996 tournament, it would appear to have been a random draw on the
tirst two days, with the results of these, particularly the first day, used to list four
seeds only for the main competition, which consisted of 30 players. The positions at
the end of each session’s play are given in Figure 3.

13 year old boys
Seed, Position, | Seed, Position, | Seed, Position, final
session 1 | session 1 | session 2 | session 2 | session 3
9 3 3 1
1 5 1 5 5 2
5 2 5 1 1 4
4 4 4 3 4 7
3 7 3 ? 8
15 15 14
2 10 2 7 8 10
12 year old boys
Seed, Position, | Seed, Position, | Seed, Position, final
session 1 | session 1 | session 2 | session 2 | session 3
1 2 2 3
6 3 8 4
8 13 6 6 6
12 14 9
12 11
7 7 12
11 13
14 13 15

Figure 2: Seeds for each session and positions at end of each session, April 1996. Both

groups in same draw for duration. (The seventh seed on day 3 was a girl.)




120 P. Norton

Position, session 1 | Position, session 2 | Seed, session 3 | Final position
12 year old boys

1 2 4 5
2 12 3 2
3 13 12
4 10 16
5 17 7
6 16 15
7 16 6
13 year old boys

1 8 2

2 4
3 11 18
4 5 8
5 1 1
6 14 14
7 3 9
8 3 10
9 11
10 19 17
11 9 13
12 18 19

Figure 3: July, 1996 tournament. Positions at the end of each sessions play, with seeds for
final draw. Groups played separately on day 1, but together for day 2 and final draw.

Under both systems, there is quite a bit of variation in position across the three days.
In both cases, in the final session, three of the top four seeds finished in the first four
positions. (Compare the men’s singles at Wimbledon this year)

4. ENTRANTS

The number of entrants by sex and age for each of the tournaments so far played is
given in the following table:
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12 & Under |13 & Over 12 & Under |13 & Over Total
Girls Girls Boys Boys
October 1995 | 18 18 25 28 89
April 1996 10 19 24 27 80
July 1996 10 14 34 25 83

The number of girls is declining; this could be looked into.

As for consistency, of the entrants in the April 1996 tournament, 7 girls had played in
the previous one and 14 boys. Of the entrants in the July, 1996 tournament, 11 girls
had played in the previous one and 20 boys (all aged 13 and under). Considering the
weather Melbourne turned on in April, this was quite good. (The en-tout-cas venues
were washed out frequently that week, whilst at the plexipave venue all players had
extensive practice in court mopping skills, and virtually all matches were shortened.)
Seven boys and four girls have played in all three.

5. SOME OBSERVATIONS

e  The top players in each age group from the district are not participating in these
tournaments. Perhaps they are off playing in other tournaments for points.

e  For the players who do participate, they seem to enjoy the format, and like
playing a variety of players. The players were not afraid to say “But I've
already played her/him”.

e  There are often turnarounds in performance. A player will beat another one
day, and lose to the same player the next.

e It is a far more social event than other tournaments. Players are there for the
whole day, and when they are off the court, for example, they may be lined up
to take their turn at table tennis. They make many new friends.

e  Prizes are now given to the winners of each group in each session. A few
players are thought to have thrown matches to give themselves a better chance
at a trophy.

6. CONCLUSIONS

The algorithm for producing one day’s draw from the previous day’s results to
produce the “best” tournament is not clear at this stage. The number of players
seeded for each session is another question that must be answered. The greater the
degree of seeding the less the potential variability in performance and in variety of
players met.
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EXERCISE PHYSIOLOGICAL, BIOMECHANICAL AND
KINANTHROPOMETRIC PREDICTORS OF BICYCLE MOTOR CROSS IN
YOUNG ADULTS: A PRELIMINARY STUDY

Steve Politil and Ian T. Heazlewood?

Abstract

Bicycle motor cross (BMX) racing is conducted on a 380 - 400 metre dirt track.
Every track is different and includes jumps, sharp bends and straights. There are
up to eight competitors on the track at one time with the objective being to cross
the finish line first. There has been minimal published systematic empirical
research that addressed the relationship between exercise physiological,
biomechanical and kinanthropometric constructs and BMX performance. The
purpose of this study was to identify the exercise physiological, biomechanical
and kinanthropometric constructs that may predict BMX finishing time. A
multivariate approach was used to examine the effects of numerous potential
predictor constructs simultaneously that predicted BMX finishing time. It was
postulated that the multivariate approach would provide more meaningful
interpretations of BMX performance. Nineteen male BMX competitors of varying
ability levels between the ages of 16 and 35 years volunteered to participate in the
study. A set of independent variables, that included age, power production, work
output, torque production, flexibility, maximal oxygen consumption, height,
weight, lean body mass, sitting height, arm span, chest circumference, thigh
circumference and calf circumference were measured and statistically analysed
against the dependent variable, BMX finishing time. Descriptive, bivariate and
multivariate statistical methods were used to analyse the data. The results
identified that lean body mass, power production and work output were the best
predictors of BMX finishing time. These findings enabled a set of predictive
equations to be developed which have important implications for talent
identification and the development training programs in the sport of BMX.

1. INTRODUCTION

Bicycle motor cross (BMX) commenced in Santa Monica California in July 1969. A
group of children not old enough to ride motorcycles, came up with the concept of
BMX, which is now an organised sport in thirty countries (Scott [1]). BMX racing is
conducted on a 380 - 400 metre dirt track. There is no standard design for a BMX
track. Every track is different in some way, making each track a new challenge for
riders. Each track must have an eight lane start gate, jumps, straights and bermed
turns, to ensure that it is suitable for BMX racing. Up to eight competitors are on the
course during race conditions, and it is not uncommon for accidents to occur. The
course takes between 30 and 35 seconds to complete for elite competitors and up to
45 seconds to complete for the less capable competitors.

1 Australian Catholic University, Sydney. NSW 2135

2 Australian Catholic University, Sydney NSW 2135
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The Australian Sports Research Centre (Draper [2]) identified the need for research
in the sport of BMX. Hinspeter, outlined the need for research in relation to
physiological characteristics of elite BMX competitors in the Sports Research Needs
1992 document (Draper [2]).

Research on BMX competition to date, has been confined to the areas of injuries,
participation, bike technology, accidents, uniform and clothing, marketing and
building tracks. However, minimal research has been published on BMX
performance that originated from sport science or exercise science. Training
guidelines have been outlined in books on BMX, such as the BMX Handbook by
Spurdens [3], but there is minimal evidence to support these training practices.

The literature that relates motor tasks, such as sprint cycling, with the relevant
human bioenergetic systems (Brooks and Fahey [4]; deVries and Housh [5]; Hahn [6];
Roberts [7]; Schell and Leelarthaepin [8]), indicates that sprint cycling events require
the breakdown of adenosine triphosphate (ATP) and creatine phosphate (CrP).
Events lasting one to ten seconds (200 metre sprint event) rely predominantly on
ATP - CrP energy production. Longer events up to one minute (1000 metre time trial)
rely on both the ATP - CrP system and anaerobic glycolysis for energy production.
The ATP-CrP and anaerobic glycolysis systems, are collectively referred to as the
anaerobic systems. It has been postulated (Brooks and Fahey [4]; deVries and Housh,
[5]; Hahn [6]; Roberts [7]) that the aerobic energy system is important for recovery
between repeated sprint activities and may have relevance for the sport of BMX. The
anaerobic systems are also postulated to the most important in the development of
maximal human torque, work and power (Hahn [6]; Roberts [7]; Schell and
Leelarthaepin [8]). However in the sport of BMX, the relevance of the various
bioenergetic systems and the relationship of torque, work and power with BMX
performance have not been empirically substantiated.

Due to the lack of published research in the sport and exercise sciences that explains
BMX performance, coaches and competitors are basing their training programs on
what successful BMX competitors are doing in training, this training may or may not
be appropriate. There is a great need to establish exercise physiological,
biomechanical and kinanthropometric profiles of BMX competitors that are more
objective and quantifiable. Quantifiable data, based on ratio level measurements
melded with substantive mathematical-statistical modelling should provide a more
complete insight into factors that determine and can predict BMX performance.

Research findings that provide this information will enable the development of a
predictive model for BMX performance, a model that will allow athletes and coaches
to identify their exercise physiological, biomechanical and kinanthropometric
strengths and weaknesses and develop specific training programs that will improve
the components of fitness that best predict BMX performance. This approach should
ultimately result in better individual performances and a higher standard of BMX
competition.

Research Problem

It appears that there is miniumal direct information from sport science or exercise
science that explains BMX performance and that has focused on exercise
physiological, biomechanical or kinanthropometric constructs as a potential set of
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predictors. Inferences can be made from the literature that analyses sprint track
cycling from sport and exercise science perspectives. That is, will those factors that
predict track sprint cycling be similar to those factors that predict BMX track
performance? The purpose of this study is to determine those exercise physiological,
biomechanical and kinanthropometric constructs that best predict performance in
BMX racing.

Research Questions

1.

Do the kinanthropometric constructs that predict sprint track cycling (as
mentioned previously), predict BMX performance?

Do the exercise physiological predictors of sprint track cycling, predict BMX
performance?

Do the biomechanical predictor, such as maximum torque, work and power,
and maximal torque, work and power divided by body weight that predict
sprint cycling, predict BMX performance?

Can mathematical-statistical models be derived, based on linear regression,
path analysis and nonlinear regression, and using exercise physiological,
biomechanical and kinanthropometric constructs, that adequately predict BMX
performance?

Research Hypotheses

1.

The kinanthropometric characteristics of sprint track cyclists will be similar to
those of BMX competitors.

Significant exercise physiological predictors of sprint track cycling performance
will also be significant predictors of BMX finishing time.

Maximal power output (watts), work capacity (kilojoules), peak torque (newton
metres), relative power (watts/kilogram)and lean body mass (kilograms) will
be significantly negatively correlated with BMX performance. These variables
will be the most significant predictors of BMX performance as reflected by track
times in competition.

There will be a significant negative correlation between grip strength and BMX
finishing time.

There will be a significant negative correlation between circumference
measurements of the chest, thigh and calf (centimetres) and BMX finishing
time.

There will be no significant relationship between flexibility and BMX finishing
time.

There will be a moderate negative correlation between maximal oxygen uptake
(VO max.) and BMX finishing time.

The multiple linear regression analysis will result in an accurate predictive
equation being developed.
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9.  Path analysis will give a more holistic insight into the relationship between the
predictive variable set and BMX performance time.

10. Nonlinear regression equations can be derived that predict significantly BMX
performance.

2. METHODOLOGY AND INSTRUMENTATION

Laboratory and field-based tests were conducted in this study. A variety of
instruments were used to gather the required data. Details of each test and each
instrument used are presented in the following text. Descriptive, bivariate and
multivariate quantitative data analyses were conducted to statistically analyse the
raw data.

Research Design

The type of research design for the current investigation is referred to as applied
research. According to Baumgartner and Strong [9], applied research is when
researchers have identified a real problem and are interested in solving it. Hinspeter
(in Sports Research Needs, [10]), identified the need for research to identify the
exercise physiological and kinanthropometric factors that predictor BMX
performance. The current study attempted to solve this real problem with the
addition of biomechanical factors that may explain BMX performance. The research
design employed for this investigation, was a nonexperimental and correlation
predictive design. The researchers did not intervene in any way and measurements
were taken of a group of individuals so that relationships could be determined
among the set of variables measured (Spector [11]). The correlation and regression
designs were used in this study to test specific hypotheses about relationships
between the measured prediction variables and BMX performance, which served as
the dependent variable (Cozby, Worden & Kee [12]).

The data that were analysed were ratio level quantitative data produced by the
Cybex 340, the Morgan Gas Analyser and the Repco Cycle Ergometer power tests. In
addition, measurements were conducted on flexibility, human girths, height, weight,
limb lengths, adiposity and grip strength. The ratio level data, is the highest quality
of data from the four levels of measurement (Rothstein [13]). All of the above
laboratory-based measurements were conducted in the Exercise Physiology
Laboratory of the Australian Catholic University, Mackillop campus, Sydney. Field
based BMX performances, which were also quantitative in nature, (time in seconds to
complete a BMX track in competition) were conducted at the Panthers BMX track,
Penrith.

The researchers attempted to limit systematic error, and therefore improve internal
validity in the laboratory environment, by using the same measurement tools, at the
same location, at approximately the same time of day, under the same environmental
conditions and using only one researcher to measure all subjects on each test. The
same testing procedures were used for all tests on all subjects. All equipment was
calibrated and checked for correct operation prior to testing.

The multivariate research approach was used in this study to examine the effect of
numerous independent or predictor variables acting together on the dependent
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variable. The multiple linear regression analysis formulated a linear model that
related the dependent variable to the set of independent variables (Norusis [14]). The
path analysis was employed to examine the indirect and direct relationships between
the independent variable set and the dependent variable (Asher [15]; Kim & Kohout
[16]). Path analysis is based on linear structural equation modelling. A set of
nonlinear regression equations was applied to assess which mathematical function
best described and explained the relationship between the independent and
dependent variables.

Sampling Procedures

"The extent to which the results of a study are representative of the intended
population depends on sampling techniques,” (Rothstein [13], p.76). For this
investigation, it was imperative that the representative sample of BMX competitors
were diverse in their ability levels, otherwise the results obtained would give a false
impression of the BMX population. Also, to distinguish the spectrum of exercise
physiological differences between elite and non-elite BMX competitors, it was
necessary to recruit a wide range of ability levels.

Subjects were recruited by verbal communication with the President of the Panthers
BMX Club, the BMX National Coaching Director (Scott [1]) and the NSW BMX State
Coaching Director (White [17]). Visits to competitions conducted at the Panthers
BMX Track for the Panthers intraclub competitions and interclub competitions
facilitated the recruitment of participants who displayed a broad range of BMX
abilities. BMX competitors were approached personally, details of the study were
explained, they were given a copy of the informed consent and information letter,
phone numbers were exchanged, and they were then contacted by phone and
arrangements were made for a time and date to be tested. All the subjects who were
approached volunteered to be part of the study.

Sample Selection

All subjects involved in this study were male and 16 years of age or older. No
attempt was made to recruit younger BMX competitors because their incomplete
physical development does not allow a comparison with the older elite competitors.
Exclusion of females from the study was not intentional. Very few females
participate in BMX in the 16 and older age groups, and those that do, live outside the
Sydney metropolitan area. This situation made recruiting females for the study very
difficult. Ability levels ranged from elite national champions to average club
competitors.

The sample size of 19 subjects was considered reasonable when compared to other
studies using a similar research design within the research domain of exercise
physiology. A review of six studies using a similar study design, indicated that the
sample size of the current research had the third highest number of subjects when
compared to the six studies.

Testing Protocols

The testing sequence was as follows. Weight and height measurements, five minutes
maximum warm-up on the cycle ergometer, followed by the 10 second cycle
ergometer power test, a minimum of three minutes rest, 30 second cycle ergometer
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power test, flexibility measurements, girth measurements (circumferences of the
chest, preferred calf and thigh), sitting height, arm span, grip strength (hand grip
dynamometer), adiposity (skinfold calipers), isokinetic dynamometry (Cybex 340)
and maximal aerobic power (V0, max. by the Morgan Gas Analyser).

3. RESULTS
Descriptive Analysis

Exercise physiological, biomechanical and kinanthropometric characteristics (mean,
standard deviation and range) are summarised in Appendix 1. The descriptive
statistics highlight the fact that a wide spectrum of ability levels for the BMX
competitors utilised in the study.

Bivariate Analysis

The Pearson product moment correlation identified numerous significant
correlations between the dependent variable and the independent variables. All
significant Pearson product moment correlation coefficients and p-values are
displayed in table 1.

Table 1. Significant Pearson Product Moment Correlation Coefficients with
Finishing Time

Variable Finish Time
Weight (kg) r=-.5569

p=.013
Grip Strength (kg) -.5828

p = .009
Thigh Circum (cm) -5517

p=.018
Power/wt (W /kg) [10 sec] -.7990

p =.000
Max Power (W) [10 sec] -.8125

p =.000
Total Work (kj) [10 sec] -.8181

p=.000
Power 10 sec (W) [30 sec] -.7581

p = .000
Power 20 sec (W) [30 sec] -7319

p=.000
Total Work (kj) [30 sec] -.8158

p=.000
Peak Torq (Nm)[flex 60] -.6445

p =.007
Peak Torq (Nm)[flex 180] -.6452

p =.007
Peak Torq (Nm)[flex 300] -5762

p=.019
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Variable Finish Time
Ave power (W)[flex 300] -.5680

p=.022
Peak Torq (Nm)[ext 60] -.5332

p=.033
Peak Torq (Nm)[ext 180] -.6400

p =.008
Peak Torq (Nm)[ext 300] -.6216

p=.010
Ave Power (W)[ext 300] -.7223

p =.002
Power/weight (W/kg) -7432
[ext 300] p =.001
20m Time (sec) -.8233

p =.000
Half Track Time (sec) -.9385

p =.000
Anaerobic Threshold (%) -.5658

p=.028
Chest Circum (cm) -.5682

p=.011
Power 1 sec (W) [10 sec] -.7864

p =.000
Power 2 sec (W) [10 sec] -.8556

p =.000
Power 3 sec (W) [10 sec] -.7685

p =.000
Power 4 sec (W) [10 sec] -.7670

p =.000
Power 5 sec (W) [10 sec] -.8366

p =.000
Power 6 sec (W) [10 sec] -.7828

p =.000
Power 7 sec (W) [10 sec] -7036

p =.000
Power 8 sec (W) [10 sec] -7314

p =.000
Power 9 sec (W) [10 sec] -.8052

p =.000
Power 10 sec (W) [10 sec] -7534

p =.000
Power 1 sec (W) [30 sec] -5123

p=.025
Power 2 sec (W) [30 sec] -7314

p =.000
Power 3 sec (W) [30 sec] -.7883

p = 000

129
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Variables

Finish Time

Power 4 sec (W) [30 sec]

Power 5 sec (W) [30 sec]

Power 6 sec (W) [30 sec]

Power 7 sec (W) [30 sec]

Power 8 sec (W) [30 sec]

Power 9 sec (W) [30 sec]

Power 11 sec (W) [30 sec]

Power 12 sec (W) [30 sec]

Power 13 sec (W) [30 sec]

Power 14 sec (W) [30 sec]

Power 15 sec (W) [30 sec]

Power 16 sec (W) [30 sec]

Power 17 sec (W) [30 sec]

Power 18 sec (W) [30 sec]

Power 19 sec (W) [30 sec]

Power 21 sec (W) [30 sec]

Power 22 sec (W) [30 sec]

Power 23 sec (W) [30 sec]

Power 24 sec (W) [30 sec]

Power 25 sec (W) [30 sec]

Power 26 sec (W) [30 sec]

Power/wt (W /kg) [30 sec]

Max Power (W) [30 sec]

-.6631

p =.000
-.8524
p =.000
-790

p =.000
-6791

p =.000
-.7618

p =.000
-.8108

p =.000
-.7819

p =.000
-.6818

p =.000
-.7141

p =.000
-.7293
p =.000
-.7799
p =.000
-.7342
p =.000
-.7411

p =.000
-.7569
p =.000
-.7891

p =.000
-.7260

p =.000
-.6400

p =.003
-.6906

p =.001
-.6416

p =.003
-.5253
p=.021
-.4754

p =.040
-.8228

p =.000
-.8329

p =.000
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Variable Finish Time
Total Work (kj) [Flex 60] -5317
p=.034
Ave Power (W) [flex 60] -.6689
p =.005
Ave Power (W)[Flex 180] -.5800
p=.019
Peak Torq (%BW) -.6258
[Ext 180] p=.010
Peak Torq (% BW) -.5218
[Ext 300] p=.038
Total Work (kj) [Ext 60] -.5292
p=.035
Total Work (kj) [Ext 180] -.6063
p=.013
Total Work (kj) [Ext 300] -.6164
p=.011
Total Work (% BW) -5529
[Ext 180] p=.026
Total Work (% BW) -.5665
[Ext 300] p=.022
Ave Power (W) [Ext 60] -.7236
p=.002
Ave Power (W) [Ext 180] -.7553
p =.001
Ave Power (% BW) -.6857
[Ext 60] p =.003
Ave Power (% BW) [Ext 180] -.7894
p =.000
Ave Power (% BW) -7349
[Ext 300] p=.001
Ave Power (%BW) -.5850
[Flex 60] p=.017
Total Work (% BW) 5791
[Flex/Ext Ratio 180] p=.019
Total Work (% BW) 5578
[Flex/Ext Ratio 300] p=.025
Ave Power (% BW) 6720
[Flex/Ext 180] p =.004
Ave Power (% BW) .5430
[Flex/Ext 300] p=.030
Lean Body Mass (kg) -.6914
p=.001

Due to the fact that multicollinearity existed among some of the variables, the
Pearson product moment correlation coefficients were used to select a subset of
variables that could be used in the multivariate analysis. The following subset of
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biomechanical and kinanthropometric independent variables were selected.
Biomechanical variables included, relative power (power/weight) in the 10 second
test, absolute total work done in the 30 second test, absolute power in the 30 second
test, Cybex measurements of absolute peak torque, relative peak torque and relative
work. The only kinanthropometric variable included was lean body mass.

Multivariate Analysis

Regression equations were derived for the dependent variable (BMX performance
time) based on the above set of predictor variables that were identified from the
Pearson product moment correlations to be significantly correlated with finishing
time.

The multiple linear regression analyses identified that relative power and absolute
work from the independent variable set are the best predictors of BMX performance
time. Table 2 shows that the highly significant beta values of these two variables are
much closer to one than any of the other variables, indicating their predictive value.

Subsequent analyses of the interrelationships identified that lean body mass was
highly predictive of relative power and absolute work. It was found that thigh
circumference and chest circumference were not as predictive as lean body mass.
Tables 3 and 4 show that lean body mass is highly predictive (beta value of one) of
both relative power and absolute work.

To this point, multiple linear regression identified that relative power and absolute
work are the most predictive variables for BMX performance time and that lean body
mass is the most predictive anthropometric variable of relative power and absolute
work.

Table 2. Block Multiple Regression Equation and Level of Significance for
Constructs Predicting Finishing Time.

Independent T Sig
Variables B SE B Beta value value
Dorsiflexion 0.093 0.181 0.122 0.514 0.623
Peak Torq 0.019 0.071 0.132 0.267 0.797
[Flex 60]

Total Work -0.329 0.497 -0.403 -0.662 0.529
[10 sec]

Max Power -0.002 0.014 -0.113 -0.125 0.904
[30 sec]

VOsmax -0.062 0.095 -0.159 -0.647 0.539
Peak Torq 0.059 0.053 0.479 1.110 0.304
[Ext 180]

Total Work

(% BW)[Ext 300] -0.059 0.064 -0.323 -0.929 0.384

Power /Wt [10 sec] -1.161 0.916 -0.647 -1.267 0.246
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Multiple R 0.893
R? 0.797
Adjusted R* 0.565

Standard Error (min)  2.835
Analysis of Variance
DF=(8,7) F=344 p-value=0.061

Table 3. Block Multiple Regression Equation and Level of Significance for
Constructs Predicting Relative Power.

Independent T Sig
Variables B SE B Beta value value
Thigh Circum -0.197 0.186 0.373 -1.063 0.306
Chest Circum -0.055 0.130 -0.138 -0.420 0.681
Lean Body Mass 0.335 0.122 1.031 2.749 0.016
Multiple R 0.675

R? 0.455

Adjusted R? 0.339

Standard Error (min)  1.932
Analysis of Variance

DF =(3,14) F=3903 p-value=0.032

Table 4. Block Multiple Regression Equation and Level of Significance for
Constructs Predicting Total Work.

Independent T Sig
Variables B SE B Beta value value
Thigh Circum -0.108 0.222 -0.096 -0.485 0.635
Chest Circum -0.049 0.156 -0.058 -0.314 0.759
Lean Body Mass 0.712 0.146 1.030 4.868 0.000
Multiple R 0.909

R’ 0.827

Adjusted R? 0.790

Standard Error (min)  2.315

Analysis of Variance
DF = (3,14) F=22.319 p-value =0.000

Multiple linear regression revealed that when lean body mass and relative power are
regressed against BMX performance time, relative power is more predictive of BMX
performance time. When lean body mass and absolute work are regressed against
BMX performance time, absolute work is more predictive of BMX performance time.
Table 5 and table 6 display these results. As can be seen from the R squared value in
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table 5, and 70.8% of the explained variance for finishing time is accounted for by
this model. The beta value of -1.089 in table 6 is inflating the explained variance,
which suggests that the model is explaining and predicting the relationship better
than it actually does. Due to the collinearity in this model it was not used in
subsequent analyses. These findings resulted in path analyses being conducted to
more fully explain the interrelationships between the best predictor independent
variables and the dependent variable.

Table 5. Block Multiple Regression Equation and Level of Significance for Lean
Body Mass and Relative Power Predicting Finishing Time.

Independent T Sig
Variables B SE B Beta value value
Power/Wt

[10 sec] -1.065 0.300 -0.600 -3.549 0.003
Lean Body Mass 0.186 0.095 -0.330 -1.954 0.068
A or Y intercept 65.685 4.866 13.498 0.000
Multiple R 0.841

R? 0.708

Adjusted R? 0.671

Standard Error (min) 2.350

Analysis of Variance
DF = (2,16)F = 19.396 p-value = 0.000

Table 6. Block Multiple Regression Equation and Level of Significance for Lean
Body Mass and Total Work Predicting Finishing Time.

Independent T Sig
Variables B SEB Beta value value
Total Work

[30 sec] -0.872 0.273 -1.089 -3.188 0.006
Lean Body Mass 0.169 0.192 0.299 0.878 0.393
Multiple R 0.825

R? 0.681

Adjusted R* 0.641

Standard Error (min) 2.455

Analysis of Variance
DF = (2,16)F = 17.067 p-value = 0.000

A path analysis was conducted to establish the direct and indirect links between lean
body mass, relative power and BMX finishing time. The results of this analysis are
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illustrated in figure 1, which represents the actual path diagram based on the
interrelationships between lean body mass, power/weight ratio and total race time.

Figure 1 indicates that the indirect path of lean body mass to relative power output
to BMX finishing time, is slightly more predictive than the direct path of lean body
mass to BMX finishing time.

E,=.79
E, =0 Power/Weight E =54
P23 = .602 P12 = -.6002
Lean Body Mass Total Time
P13 =-.330

Figure 1: The actual path diagram based on the interrelationships between lean body mass,
power/weight ratio and total race time. Path coefficients were based on standardised beta
coefficients. The symbols E;, E, and Ej represent all the residual causes of the measured
variables for lean body mass, power/weight and total time.

The path equations based on the model and path coefficients in Figure 1 can be
decomposed and solved by the following equations (1) and (2).

Total Effect = Direct Effect + Indirect Effect + Noncausal Effects (1)

Original Covariation (correlation) = r 2
=P;3+ P23 X P12 +0-.6914
=-.330 + .602 x (-.6002) + 0 —.6914 = —.691

Direct Effect = P;3= —.330
Indirect Effect = Py x Py, =.602 x (—.6002) = —.361
Noncausal Effect = 0

The multiple linear regression model can be used for prediction as well as
explanation. The theoretical equation for prediction in the linear regression model is;
Y = Bl X1 + B2 X2 + a, where Y = dependent variable, B = beta value,
X = independent variable and a = constant. The predictive model developed is;
Finishing time = —0.60 (power/weight ratio) + -0.33 (lean body mass) + 65.69. Table 7
represents the difference between the real and the predicted finishing times using the
above equation. As can be seen the difference is small (calculated mean error 4.2%).
Based on these results the predictive model developed can be used to estimate
finishing time with confidence.
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Table 7. The Difference between the Actual Finishing Time and the Predicted
Finishing Time of BMX Competitors.

Subject  Actual Finishing Time Predicted Finishing Time Difference

(seconds) (seconds) (seconds)
1 34.70 39.07 -4.37
2 42.10 39.04 3.06
3 33.00 34.95 -1.95
4 34.00 ‘ 36.58 -2.58
5 36.19 34.85 1.34
6 41.00 40.55 0.45
7 46.26 4412 2.14
8 35.53 37.35 -1.82
9 39.00 37.36 1.64
10 37.68 36.20 1.48
11 37.77 39.33 -1.56
12 37.78 41.08 -3.30
13 36.79 33.33 3.46
14 35.33 35.13 0.20
15 40.95 38.56 2.40
16 35.13 35.21 -0.08
17 46.67 46.33 0.34
18 32.00 33.64 -1.64
19 41.00 40.19 0.81

Nonlinear Regression

The nonlinear regression analysis first examined the relationship between
power/weight ratio and track finishing time. This was assessed by visual inspection
for linear or nonlinear trends by a scatterplot which is presented in figure 2. It was
difficult to fit the relationship to a specific mathematical function by visual
inspection, therefore, all potential mathematical functions were fitted and assessed
by goodness-of-fit criteria. Table 8 indicates the goodness of fit criteria for each

function, and includes the R? value (explained variance), degrees of freedom, the
variance (F) ratio, and the coefficients for each mathematical equation. Note that in
table 8 that; b,= a constant; b1, b2 and b3 = regression coefficients; and Rsq =

coefficient of determination or R>.
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Figure 2: The scatterplot relationship between power/weight ratio and track finishing time.

Table 8. Indicates the Goodness-of-Fit for Each Function, and Includes the R*
value (Explained Variance), Degrees of Freedom, the Variance (F) Ratio, and the

Coefficients for Each Mathematical Equation.

Dependent Rsq  d.f. F sign. by bl b2 b3
Variable

Finish Time

Function

Linear .638 17 30.00 .000 59.3972 -1.4174

Logarithmic  .635 17 29.61 .000 88.1420 -18.561

Inverse .614 17 27.05 .000 224373 228.281

Quadratic .640 16 4.20 .000 63.2184 -1.9998 .0214
Cubic .640 16 14.21 .000 62.1894 -1.7369 ns .0006
Compond .610 17 26.56 .000 64.6115 9651

Power .601 17 25.66 .000 132.023  -.4630
Sigmoidal 576 17 23.13 .000 3.2459 5.6690

Growth .610 17 26.56 .000 41684  -.0355

Exponential  .610 17 26.56 .000 64.6115 -.0355

Logistic .610 17 26.56 .000 .0155 1.0361

Table 8 indicates that the best fits were for the cubic and quadratic models with an
R = .640, p <.001, however all the functions have been identified as statistically
significant with R, values ranging between .576 and .640. However, the cubic and
quadratic functions (R*=.640) are only marginally better than the bivariate linear

function (R*=.638). A more detailed analysis of the cubic method to fit the
relationship is presented in table 9. This analysis indicates that the quadratic
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component in the equation was nonsignificant in its contribution to the nonlinear
regression model (p-value = .8034). Figure 3 indicates the line of best fit for the cubic
regression equation and the original values for finish time and power/weight ratio.

The predicted values for track finish times were calculated, as well as the residuals
which are displayed in Table 10. The residuals are the difference between the actual
score and the predicted score. A good predictive model will have small residuals and
an R? that approaches unity (=1).

Table 9. The detailed nonlinear regression solution for the cubic model.

Dependent variable Finish Time = Method — CUBIC

Multiple R 79987
R Square 63979
Adjusted R Square  .59476
Standard Error 2.60822

Analysis of Variance:
DF  Sum of Squares Mean Square

Regression 2 193.32374 96.661868
Residuals 16  108.84511 6.802819

F-ratio=  14.20909  Significance of F = .0003

Variables in the Equation

Variable B SEB Beta T Sig. T
VARO00009 -1.736926 1.280266 -.979043 -1.357 1937
VAR00009**3 .000556 .002181 184116 255 8019
(Constant) 62.189446  11.670995 5.329 .0001

----------—---- Variables not in the Equation ---------------

Variable Beta In Partial Min Toler T Sig. T
VAR00009**2 -6.459211 -.065285 3.680E-05 -.253 8034



Exercise Predictors of BMX in Young Adults 139

'_Obw\ed

* Quhic

18 20

Power/\Weight Ratio (watts/kg)

Figure 3: The line of best fit using the cubic model (smooth curve) and the actual values for
power/weight and track time (saw-tooth curve.

Table 10. The predicted track time and residual for each participant.

Predicted Track Time (s)

Residual for Cubic Function (s)

38.14375
38.84245
35.08638
35.93699
34.73058
38.14375
44.07690
36.52015
36.91775
35.73246
37.81535
41.92132
34.66779
35.54482
39.99060
35.73246
47.25153
34.79122
41.03377

-3.44375
3.25755
—2.08638
-1.93699
1.45942
2.85625
2.18310
-99015
2.08225
1.94754
—-.04535
—4.14132
2.12221
—-.21482
.95940
-.60246
—-.58153
-2.79122
-.03377




140 S. Politi and I.T. Heazlewood
4. DISCUSSION

Descriptive Analysis

When the results are compared to previous literature, McLean and Parker [18] found
that for 35 elite male sprint track cyclists, the mean value of kinanthropometric
variables measured was as follows: height 178 cm, weight 72.5 kg, age 22.6 years,
sitting height 91.6 cm, chest circumference 95 cm, thigh circumference 55.7 cm, calf
circumference 36.8 cm, total skin folds (eight sites) 56.3 mm and knee extension
torque (isometric at 115 degrees) 235.2 Nm.

Mean values of kinanthropometric measures conducted in the present study were as
follows: height 169 cm, weight 73.89kg, age 22.4 years, sitting height 90.46 cm, chest
circumference 93.58 cm, thigh circumference 56.75 cm, calf circumference 37.83 cm,
total skinfolds (four sites) 39.26 and knee extension torque (isokinetic 60
degrees/second) 214.38 Nm.

It can be seen from the means of the kinanthropometric measurements taken that
BMX competitors and sprint track cyclists are very similar in relation to
kinanthropometrics, except for height and the sum of skinfolds. The sprint track
cyclists on average are nine centimetres taller than the BMX competitors. The young
age of some of the subjects used in the current study could account for the height
differences between BMX competitors and sprint track cyclists.

The differences in skinfold measurements between the two studies can be explained
by noting that skinfold measurements were taken from a different number of sites.
However, when the mean values of each study were converted to percent adiposity,
the difference was negligible. This finding confirms hypothesis number one, that the
kinanthropometric measurements of BMX competitors and sprint track cyclists will
be similar.

It is possible to compare knee extension peak torque, however, caution needs to be
taken, because two different measurement protocols were used and this could result
in different findings. McLean and Parker [18] conducted their measurement during
an isometric contraction at 115 degrees, whereas the BMX study conducted the same
measurement during an isokinetic contraction at 60 degrees per second. However,
both methods have measured essentially the same performance variable (peak
torque extension). The isokinetic contraction at 60 degrees per second is a slow
movement, and it is therefore possible to compare the two measurements to a certain
degree.

The sprint track cyclists produced marginally greater force than the BMX athletes.
Sprint track cyclists push a very large fixed gear and reach greater velocities than
BMX competitors. The BMX athletes push a smaller fixed gear and rely on high
cadence to gain maximum speed. This difference in the two events could explain the
greater force production of the sprint track cyclists.

The remaining kinanthropometric variables measured, chest circumference, thigh
circumference, calf circumference, weight, sitting height and age are very similar.
This finding is interesting because of the samples used in each of the studies. The
McLean and Parker [18] study was conducted on elite sprint cyclists, whereas the
present study was conducted on a broad range of ability levels of BMX competitors.
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The similarities were expected because of the similarities in the two events.
However, the extent of the similarities was interesting because of the different
samples used in both studies.

In the present study, the mean height of the BMX competitors was 169 cm which is
below the average height for an adult male. The mean sitting height was calculated
at 90.46 cm. Using sitting height, the mean leg length is therefore 78.54 cm which is
relatively short in comparison to adult males. In the McLean and Parker study [18],
the mean height was 178 cm and the mean sitting height was 91.6 cm, giving a mean
leg length of 86.4 cm.

The BMX competitors have shorter leg lengths than the sprint track cyclists reported
in the McLean and Parker [18] research. This is an interesting finding as it is
consistent with a study conducted by Foley, Bird and White [19], where it was found
that sprint track cyclists have shorter leg lengths than other cyclists, such as time
trialists, pursuit cyclists and road cyclists. This finding and the findings in the
present BMX study indicate that short leg length may be an advantage in sprint
cycling events.

Foley et al. [19] suggested, that sprint cycling requires cyclists to generate large
amounts of power very quickly. The athletes’ utilisation of the relevant energy
systems is very important in solving this problem successfully, however it appears
that athletes with shorter legs can tolerate greater speed of movement. Power is
equal to force multiplied by velocity. Therefore, generating higher leg speed
(cadence) in cycling will result in higher power output if the force production
remains constant. The fact that the McLean and Parker [18] study showed that sprint
track cyclist have longer legs than BMX competitors indicates that because BMX
competitors push an easier gear than the sprint track cyclists, BMX competitors may
rely more on high movement speed to generate large amounts of power. In this
situation shorter leg length would appear to provide a competitive advantage. This
is only speculation and a controlled scientific research is required to confirm this
interpretation.

Correlation Analysis

The purpose of the Pearson Product Moment correlation analysis was to identify a
subset of independent variables that could be incorporated into a multivariate
analysis, specifically multiple linear regression and path analysis. The correlation
analysis identified 78 variables out of 116 variables (67%) that were significantly
correlated with the dependent variable, that is BMX performance time. Many of the
variables were essentially measuring similar constructs, this hypothesis was
corroborated by conducting a confirmatory factor analysis. For example, each second
of both the 10 second and 30 second cycle ergometer power tests, were loaded on a
significant single factor. Also, many of the force production variables measured by
the Cybex 340 were similar to those variables measured on the cycle ergometer tests
as they loaded on the significant single factor. It was therefore expected that many
predictor variables would be significantly correlated with the dependent variable,
that is finish time, as well as with many other predictor variables.

The results of the correlation analysis showed that weight was significantly
negatively correlated (r=-.5569) with BMX finish time. When weight was analysed in
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terms of body composition it was found that lean body mass had a significantly
higher negative correlation (r=-.6914) with finish time than total weight. As lean
body mass increased finishing time is reduced. Adiposity was not significantly
correlated (r=.3908) with BMX performance time. These results indicate that weight
is an important factor in BMX performance, however body composition is more
important. If total weight includes a high percentage of adiposity performance will
decrease, however if total weight has a large amount of lean body mass performance
in BMX will improve.

In the Foley et al. [19] and McLean and Parker [18] studies, the results showed that
the sprint cycle group were significantly more mesomorphic than the time trialists,
pursuit and road cyclists. The authors concluded, that the high mesomorphic body
type of the sprint cyclists is correlated with body strength and power, both factors
are thought to be required for sprint cycling events. The results of the correlation
analysis of the present BMX study confirm that a mesomorphic build (large amount
of lean body mass) is beneficial to BMX performance, as BMX racing is essentially a
sprint cycling event. This finding supports hypothesis number three which states
that lean body mass will be one of the best predictors of BMX performance.

The correlation analysis identified that there was no significant relationship between
height and BMX finishing time, sitting height and finishing time or between leg
length and finishing time. This finding differs with the findings of the Foley et al.
[19] study where sprint track cyclists had significantly shorter legs than endurance
cyclists.

The correlation analysis identified that there was a significant negative correlation
between grip strength and BMX performance time. This finding was not surprising
when BMX racing technique was subjectively analysed, using a task analysis.
Spurdens [3] stated that upper body strength is required in BMX because much of
the impetus comes from the pull exerted on the bars of the bike for lifting the bicycle
around bends and over jumps. The findings in the present study confirm hypothesis
number three, that grip strength would be significantly negatively correlated with
BMX finish time. Spurdens' [3] perceptions in relation to upper body strength and
BMX performance has also been confirmed by the finding that grip strength had a
significant relationship with finish time.

The results of the correlation analysis revealed that chest and thigh circumference
were significantly negatively correlated with BMX finish time, however calf
circumference has no significant association with BMX finish time. Hypothesis
number four stated that chest, thigh and calf circumferences would be significantly
negatively correlated with BMX finish time. The results of the correlation analysis
support the relationship between chest and thigh circumference, however the
relationship between calf circumference and BMX finish time has not been
corroborated.

The McLean and Parker [18] study found that sprint cyclists had larger chest, thigh
and calf circumferences than endurance cyclists. Mackova, Melichna, Havlickova,
Platecha, Blahova and Semiginovsky [20] found that the diameter of fibres from the
Vastus lateralis (thigh) was significantly greater in sprint cyclists than in non-cyclists.
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The findings of the present BMX study also suggest that chest and thigh
circumference are important in sprint cycling events. These findings are not
surprising considering that it has been established that lean body mass and upper
body strength are important factors in BMX performance. Muscle hypertrophy
(large chest and thighs) would result in greater lean body mass and greater muscular
strength (grip strength), which are all significantly associated with BMX finish time,
a relationship that has been demonstrated in this research.

The fact that calf circumference was not found to be significantly associated with
BMX finishing time in the present study, but was found to be significantly larger in
sprint cyclists than endurance cyclists in the McLean & Parker [18] study, could
possibly be attributed to the different techniques used in sprint track cycling and
BMX competition. Apart from biomechanical differences between bicycles, BMX
competitors stand up for the entire event with a non-fixed foot, therefore they only
produce power in the down stroke of the pedal cycle, whereas sprint track cyclists
remain seated with fixed feet which allows force to be applied for a large part of the
pedal cycle. The different techniques when BMX pedalling is compared to sprint
cycle pedalling, indicate that the leg muscles of the different cyclists are being
stressed in different ways. The BMX pedalling technique, due to the standing
position, is emphasising quadricep torque and power production, and the
importance of thigh muscle development to BMX performance.

Hypothesis number six stated that there would be no significant correlation between
flexibility and BMX performance time. The results supported this hypothesis. Four
flexibility measurements were assessed and included sit & reach, dorsiflexion,
plantar flexion and hamstring flexibility, none of which were significantly correlated
with BMX finish time.

A search of the literature on flexibility and sprint cycling revealed that none of the
studies conducted on sprint cyclists considered flexibility in their research designs.
Spurdens [3] states that flexibility is important for BMX performance, as he believes
flexibility helps reduce the chance of injury and increases the range of movement.
Both factors should facilitate the movement pattern when cycling in BMX. This
statement has not been confirmed by the present BMX study.

deVries and Housh [5] state that the need for flexibility varies with the athletic
endeavour. In some activities it is more important than in others. The correlation
analysis from the present BMX study indicates that flexibility is not an important
predictor of BMX performance expressed as finishing time. The role of flexibility
preventing injury in BMX probably requires a more controlled sport scientific study
to elucidate the effects of flexibility on injury prevention in BMX participants.

It was hypothesised that there would be a moderate negative significant correlation
between maximal oxygen consumption and BMX finishing time. The correlation
analysis refuted clearly this hypothesis. Telford, Hahn, Pyne and Tumilty [21] found
that there was no significant difference in maximal oxygen consumption between
sprint track cyclists and road cyclists. Telford et al. [21] speculated that this result
may due to the fact that track cyclists undertake a high volume of training in
preparation for the track season. This result based on type of training is surprising
considering the different energy systems required for sprint track cycling and road
cycling.
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The finding of the current BMX study indicates that maximal oxygen consumption is
unrelated to finishing time in BMX competition. When the time span of a BMX event
(30 - 40 seconds) and the dominant energy systems that would be utilised (ATP-CrP
and anaerobic glycolysis) are considered, it makes perfect sense that maximal oxygen
consumption is unrelated to finishing time in BMX competition. The researcher
hypothesised that maximal oxygen consumption would be moderately negatively
associated with BMX finishing time due to the BMX race day structure. The
competitors are required to race numerous times on the same day before qualifying
for the final. It was speculated that a moderate maximal oxygen consumption
capacity would be an advantage in recovering between heats (motos) and thus
allowing the individual to perform at a high intensity in all races on race day.

As was discovered by Dawson, Fitzsimons and Ward [22] in their study on repeated
sprint ability, the aerobic energy system is closely associated with performance
decrement in repeated sprint activities. However, the recovery time between BMX
races in a given competition day may not be short enough to stress the aerobic
system, a situation that diminishes the importance of aerobic ability in influencing
BMX racing.

Many of the power variables measured were highly negatively correlated with BMX
finish time. Hypothesis number three was supported, in that both absolute power
and relative power were highly significantly negatively correlated with BMX finish
time.

With reference to Telford's et al. [21] conclusion, that for optimal performance sprint
cyclists must develop their maximal power and anaerobic energy systems to their
maximum extent, the findings of the present study are not surprising. The amount of
power produced for every second of the ten second power ergometer test was
significantly negatively correlated with BMX finishing time. However, for the 30
second cycle ergometer test the final four seconds were not significantly correlated
with finish time. This is interesting considering that a BMX event lasts between 30
and 40 seconds.

Faria [23] states that performance in sprint cycling events necessitates the breakdown
of high energy compounds, such as adenosine triphosphate (ATP) and creatine
phosphate (CrP). Sprint cycling events lasting approximately 10 seconds rely heavily
on the ATP-CrP energy system, events lasting between 30 and 60 seconds rely
heavily on the anaerobic glycolytic or lactic acid energy system.

Considering this information it would be expected that a BMX event would rely
heavily on the lactic acid energy system. However, in the 30 second cycle ergometer
test which measured the capacity of the lactic acid energy system, it was found that
this system was not conditioned well enough to maintain maximal output for 30
seconds due to the significant decline in work output. Considering that a BMX event
lasts for a minimum of 30 seconds this finding would not be expected.

However when a BMX race event is task analysed, it becomes apparent that the
competitors do not pedal at maximum intensity for the entire duration of the event.
In fact, at some stages of the race the competitors stop pedalling completely while
going over jumps or around bends or when they are blocked by another competitor.
These breaks allow recovery time between high intensity efforts. Therefore, the lactic
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acid system is not being stressed as much as would be expected when the time span
of the event is considered. .

Telford et al. [21] found that sprint cyclists are able to produce more torque (force)
and had higher anaerobic work capacities than road cyclists. The current BMX study
found that both torque production and anaerobic work capacity variables were
significantly correlated with BMX finishing time. These findings confirmed
hypothesis number three that work capacity and force production would be highly
significantly and negatively correlated with finish time.

Burke, Fleck and Dickson [24] concluded from their study that anaerobic metabolism
contributes significantly to energy production in sprint track cycling competition.
Mackova et al. [20] also concluded that anaerobic metabolism is important in sprint
cycling events. The results of the correlation analysis of the present study also
indicate that anaerobic metabolism is important in BMX competition, which is a
sprint cycling event.

The fact that anaerobic constructs such as torque, work and power were so
significantly and negatively correlated with finish time and that aerobic constructs
such as maximal oxygen consumption were not significantly correlated with finish
time, suggests that anaerobic power and work production are extremely important
to successful BMX racing.

Regression Analysis

Regression analysis allowed a more complete analysis as to what variables were the
most important to the BMX performance. In the regression analysis the variables
were treated simultaneously, which allowed the researcher to identify a subset of
independent variables that best predicted BMX finishing time. These results were
then used to develop a predictive equation for BMX finishing time so that a causal
relationship predicting performance could be identified.

The results of the regression analysis showed that lean body mass, total work
achieved on the 30 second test (absolute) and relative power achieved on the 10
second test are the best predictors of BMX finishing time. These results corroborate
hypothesis number three. Therefore, to be successful in BMX competition an
individual requires a large amount of lean body mass, they need to be able to
generate a large power output relative to their body weight in a short period of time
(10 seconds) and they also need to be able to produce a large work output over 30
seconds.

Telford et al. [21] found that sprint track cyclists in comparison to road cyclists
generated higher power output during a 10 second cycle ergometer test. The sprint
track cyclists also produced larger work outputs over a 60 second cycle ergometer
tests. Telford et al. [21] did not apply regression analysis to their results, however
their findings indicate that power and work output are highly predictive of sprint
cycling performance.

Foley et al. [19] and McLean & Parker [18] found that sprint track cyclists had high
mesomorphic ratings (a large amount of lean body mass) in relation to other groups
of cyclists such as time trialists, pursuit cyclists and road cyclists. Neither of these
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researchers applied regression analysis to their results, however the results of both
studies indicate that lean body mass is predictive of sprint track cycling.

The above findings confirmed hypothesis number two that the best predictors of
sprint track cycling performance will also be the best predictors of BMX finishing
time. As was indicated in the results the predictive equation was reasonably accurate
with a mean error of 4.2%. A good model that describes the relationship between the
dependent variable and the predictor variables has been established due to the high
multiple correlation (multiple R) and high value for the coefficient of multiple
determination (R squared), small residuals and highly significant p-values. It should
be highlighted that 70.8% of the variance was explained and the prediction of scores
based on the multiple linear regression equation displayed low percentage error for
the residuals. Specifically, the percentage error scores for each BMX cyclists varied
from 0.1% to 11.1%.

The results of the multiple linear regression analysis and the development of the
predictive equation have important implications for the development of BMX as a
sport. The standard of competition could be improved by adopting two methods.
The first method is by improving the performances of current athletes by strength
and power training, and the second method is through talent identification, by
measuring work and power production integrated with kinanthropometric profiling.

Current BMX competitors can be subjected to a series of biomechanical and
kinanthropometric tests. The results could be assessed by the predictive equation to
determine the BMX competitors strengths and weaknesses. For example, if it was
identified that the competitor was unable to generate adequate power output in the
ten second cycle ergometer test, the training program could be adjusted to improve
power output, a factor which through the multiple linear regression analysis has
been shown to be highly predictive of BMX finishing time.

A talent identification program could also be implemented into schools, as is the case
with other sports, such as athletics. Field-based tests that measure the predictive
biomechanical and kinanthropometric constructs could identify those who have the
potential to be successful in the sport of BMX. Those that meet a set of selection
criteria could be offered scholarships to train with a BMX development squad.
Similar situations based on talent identification occur in athletics (Torbottom [25, 26];
Jones [27]).

Path Analysis

The results of the regression analysis identified the best predictors of BMX finishing
time, however this information did not distinguish between direct and indirect
causal paths of the independent variables (lean body mass, work output and relative
power) influence on the dependent variable (BMX finishing time). Path analysis was
used to determine the causal structure of an explanatory causal model by examining
the direct and indirect effects of the independent variables on the dependent
variable.

Separate path analyses were conducted on lean body mass, relative power and BMX
finishing time and lean body mass, work output and finishing time. The results of
the path analysis revealed that lean body mass directly effects both relative power
and work output. However, lean body mass has significant indirect effect via
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relative power on BMX finishing time. Both relative power and work output directly
influence BMX finishing time.

In other words relative power was identified as a mediating variable. Relative power
and work output are dependent on lean body mass and BMX finishing time is
dependent on work output and relative power. The path analysis identified a causal
order and structure. Kinanthropometrics (lean body mass) directly influence wok
output and relative power production which then directly influences BMX finishing
time. However, lean body mass indirectly influences finishing time via the indirect
path through relative power and work output.

The findings of the path analysis has important implications for training BMX
competitors. Lean body mass needs to be increased to improve work output and
relative power which will in turn decrease BMX finishing time both directly and
indirectly. An increase in lean body mass that does not improve relative power and
work output will not improve BMX performance time due to the finding that lean
body mass has less significant direct influence on BMX finishing time.

Nonlinear Regression

The nonlinear regression analysis indicated that a marginally better regression
equation can be derived than when using the linear regression approach. Many
nonlinear models indicated a significant amount of explained variance between
finish time and power/weight ratio. Both the quadratic and cubic models produced
an identical amount of explained variance (64%). The application of nonlinear
regression highlights the fact that there are a number of potential curves that can fit
the data. However the researcher should endeavour to fit ‘the best” model to the
data, and not assume that the model will fit a linear function which is often the case
in the exercise and sport sciences.

Summary of Discussion
The majority of hypotheses were corroborated by the findings of the current study.

1. The kinanthropometric constructs measured in the current study were found to
be very similar to those found in sprint track cyclists.

2. The correlation analysis identified lean body mass as being significantly related
to BMX finishing time.

3. Power, torque and work constructs were found to be highly predictive of
finishing time.

4.  The regression analysis revealed that lean body mass, power and work are the
best predictors of finishing time.

5.  Path analysis indicated the role of lean body mass influencing directly finishing
time as well as the indirect path via power/weight ratio that also influences
performance.
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Nonlinear regression indicated that a number of mathematical models, for
example quadratic and cubic models, may marginally improve the predictions
of performance when compared to linear regression models.
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APPENDIX I

Table of Means, Standard Deviations and Ranges for all Variables in the Study.

Variable M SD Range
Weight (kg) 73.89 7.6 62.7 - 88.3
Height(cm) 174.5 4.53 168 - 181
Grip Strength (kg) 59.58 7.3 50-76
Sitting Height(cm) 90.46 3.0 84 - 95
Arm Span(cm) 181.5 7.3 169 - 194
Thigh Circum(cm) 56.75 4.5 47 - 67
Sit & Reach(cm) 7.26 7.54 -7-26
Adiposity (mm) 39.26 14.9 23.5-82
Power/wt (W/kg) [10sec]  15.06 2.3 8.7-18
Max Power (W) [10 sec] 346.4 35.2 285 - 420
Total Work [kj] [10 sec] 9.56 2.1 5-12.8
Power 10 sec (W) [30 sec] 974.1 229.9 511 - 1401
Power 20 sec (W) [30 sec] 794.26 152.9 554 - 1142
Power 30 sec (W) [30 sec] 524.32 173.8 38 - 826
Total Work (kj)[30 sec] 25.04 5.1 14.9 - 35
Peak Torq (Nm)[flex 60] 143.44 30.1 89 -195
Peak Torq (Nm)[flex 180] 116.5 21.6 77 - 162
Peak Torq (Nm)[flex 300] 89.69 17.7 65 - 132
Ave power (W)[flex 300] 278.81 62.3 178 - 449
Power/weight (W/kg)

[flex 300] 378.81 60.3 287 - 516
Endurance Ratio (%)

[flex 300] 64.5 7.0 55-76
Endurance Ratio (%)

[ext 300] 68.57 8.9 54 - 83
Peak Torq (Nm)[ext 60] 214.38 46.6 141 - 287
Peak Torq (Nm)[ext 180] 154.56 37.1 93 -218
Peak Torq (Nm)[ext 300] 109.19 22.3 69 - 151
Ave Power (W)[ext 300] 313.75 81.8 197 - 453
Power/weight (W/kg)

[ext 300] 423.75 75.6 281 -539
VO2 Max (ml/kg/min) 60.29 10.7 38.23-77
20m Time (sec) 2.87 0.3 246-3.6
Half Track Time (sec) 21.33 2.1 18.85 - 26.2

Finish Time (sec) 38.05 4.1 32 - 46.67
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Variable M SD Range
Anaerobic Threshold (%) 80.66 12.1 61-96
Chest Circum (cm) 93.58 6.0 86 - 105
Calf Circum (cm) 37.83 2.1 35-41
Dorsiflexion (Deg) 79.18 6.5 67 - 94
Plantaflexion (Deg) 146.68 19.5 72-165
Hamstring Flex (Deg) 156.1 12.0 130-170
Power 1 sec (W) [10 sec] 613.68 229.4 196 - 884
Power 2 sec (W) [10 sec] 994.05 267.3 478 - 1366
Power 3 sec (W) [10 sec] 1066.68 254.9 545 - 1501
Power 4 sec (W) [10 sec] 1084.32 2499 543 - 1540
Power 5 sec (W) [10 sec] 1109.63 243.3 536 - 1449
Power 6 sec (W) [10 sec] 1076.84 210.7 596 - 1371
Power 7 sec (W) [10 sec] 1047.27 238 546 - 1490
Power 8 sec (W) [10 sec] 1029.68 227.9 601 - 1407
Power 9 sec (W) [10 sec] 1011.26 242.7 534 - 1422
Power 10 sec (W) [10 sec] 1003.21 231.5 600 - 1304
Power 1 sec (W) [30 sec] 555.42 274.5 37-970
Power 2 sec (W) [30 sec] 905.53 312.6 326 - 1374
Power 3 sec (W) [30 sec] 1058.53 290.5 458 - 1523
Power 4 sec (W) [30 sec] 1108.00 338.4 482 - 1949
Power 5 sec (W) [30 sec] 1099.89 264.1 521 - 1457
Power 6 sec (W) [30 sec] 1088.00 237.6 520 - 1520
Power 7 sec (W) [30 sec] 1046.12 234.5 543 - 1419
Power 8 sec (W) [30 sec] 1058.79 261.7 550 - 1516
Power 9 sec (W) [30 sec] 1008.89 212.5 574 - 1348
Power 11 sec (W) [30 sec] 941.53 200.3 599 - 1341
Power 12 sec (W) [30 sec] 918.21 221.2 532 -1332
Power 13 sec (W) [30 sec] 911.12 194.7 565 - 1371
Power 14 sec (W) [30 sec] 893.21 166.4 562 - 1164
Power 15 sec (W) [30 sec] 874.26 185.7 555 - 1245
Power 16 sec (W) [30 sec] 853.05 196.1 572 - 1279
Power 17 sec (W) [30 sec] 830.00 178.3 505 - 1175
Power 18 sec (W) [30 sec] 825.74 152.8 604 - 1189
Power 19 sec (W) [30 sec] 815.74 154.1 514 - 1200
Power 21 sec (W) [30 sec] 761.37 156.5 473 - 1048
Power 22 sec (W) [30 sec] 755.79 137.6 554 - 1042
Power 23 sec (W) [30 sec] 718.12 163.3 468 - 1103
Power 24 sec (W) [30 sec] 724.37 165.9 492 -1128

Power 25 sec (W) [30 sec] 679.00 173.3 401 - 1084
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Variable M SD Range
Power 26 sec (W) [30 sec] 643.37 159.4 276 - 1003
Power 27 sec (W) [30 sec] 616.47 159.1 168 - 902
Power 28 sec (W) [30 sec] 598.95 177.1 97 - 874
Power 29 sec (W) [30 sec] 590.26 175.1 52 - 841
Power/wt (W /kg) [30 sec] 14.98 2.6 8.5-18.6
Max Power (W) [30 sec] 1116.32 258.8 564 - 1540
Total Work (kj) [Flex 60] 177.31 44.6 96 - 241
Total Work (kj) [flex 180] 136.94 29.2 92-174
Total Work (kj) [flex 300] 104.50 22.34 63 - 147
Total Work (% BW)

[flex 60] 234.25 44.87 137 -295
Total Work (% BW)

[Flex 180] 186.5 33.7 136 - 234

Table of Means, Standard Deviations and Ranges for all Variables in the Study.

Variable M SD Range
Total Work (% BW)

[Flex 300] 142.13 24.55 101 - 180
Ave Power (W) [flex 60] 105.69 22.7 66 - 142
Ave Power (W)[Flex 180] 225.19 41.1 158 - 292
Peak Torq (%BW)

[Flex 60] 193.19 31.2 127 - 245
Peak Torq (% BW)

[Flex 180] 157.56 22.3 110- 193
Peak Torq (% BW)

[Flex 300] 121.81 16.5 92-151
Peak Torq (% BW)

[Ext 60] 293.63 429 201 -363
Peak Torq (%BW)

[Ext 180] 209.31 35.1 134 - 259
Peak Torq (% BW)

[Ext 300] 149.13 21.8 106 - 179
Total Work (kj) [Ext 60] 216.38 50.7 135 - 305
Total Work (kj) [Ext 180] 158.00 39.1 98 - 231
Total Work (kj) [Ext 300] 114.94 26.6 70 - 161
Total Work (% BW)

[Ext 60] 293.06 49.2 192 - 386
Total Work (% BW)

[Ext 180] 213.38 6.6 140 - 292



Exercise Predictors of BMX in Young Adults

Variable M SD Range
Total Work (% BW) 14.98 2.6 8.5-18.6

[Ext 300] 155.25 23.5 112-193
Ave Power (W) [Ext 60] 136.13 28.6 88 - 187
Ave Power (W) [Ext 180] 267.50 71.7 154 - 377
Ave Power (% BW)

[Ext 60] 184.45 25.6 134 - 229
Ave Power (% BW)

[Ext 180] 360.94 67.8 227 - 438
Ave Power (% BW)

[Ext 300] 421.06 76.1 281-539
Ave Power (%BW)[

[Flex 60] 147.81 26.4 94 - 207
Ave Power (%BW)

[Flex 180] 299.56 53.1 185 - 388
Ave Power (% BW)

[Flex 300] 363.63 84.6 142 - 516
Flex/Ext Ratio (60) 65.69 7.5 50-78
Flex/Ext Ratio (180) 76.13 11.2 59 -103 -
Flex/Ext Ratio (300) 81.94 9.3 68 - 105
Total Work (% BW)

[Flex/Ext Ratio 60] 79.63 9.7 63 - 100
Total Work (% BW)

[Flex/Ext Ratio 180] 87.88 15.3 65 - 126
Total Work (% BW)

[Flex/Ext Ratio 300] 91.69 14.7 69 - 132
Ave Power (% BW)

[Flex/Ext Ratio 60] 77.44 8.6 58 - 94
Ave Power (% BW)

[Flex/Ext 180] 86.69 16.2 63 -130
Ave Power (% BW)

[Flex/Ext 300] 90.75 14.5 69 - 127
Age (years) 22.39 24 16 - 36
Adiposity (%) 15.54 44 9-25
Lean Body Mass (kg) 62.38 7.3 53.55-79

153



154



155

THE NATIONAL STATISTICAL INITIATIVE

Ian Smith!

Abstract

Reliable, well organised and accessible statistics on the Sport and Recreation
Industry are mostly unavailable in Australia. This situation has hindered effective
planning and development and limited the ability of government and non-
government organisations to formulate sound strategic policies. The Sport and
Recreation Ministers Council (SRMC) has recognised the need for better data by
establishing a Statistical Working Group (SWG). SWG’s aim is to improve the
definition, range and quality of statistics for the industry. To meet this aim,
information is needed based on widely agreed statistical definitions and needs.

SWG sought regular, reliable and independent data collections, that could only be
provided by the Australian Bureau of Statistics (ABS). However, before ABS data
collections could be unlocked, changes were needed to ABS definitional
frameworks. Thus, the first task was to develop a National Sport and Recreation
Industry Statistical Framework, which defines the industry and its data needs, and
establishes long term plans of how these needs should be met by ABS. The
Framework identifies statistical needs of each industry segment from the creation
of a service or product through to its end use.

Following wide consultation, SWG also developed reports on employment in the
National Sport and Recreation Industry Occupational Structure and a snapshot of
the industry in Available Data an Sources for the Sport and Recreation Industry.
The three reports have been endorsed by SRMC and presented to ABS for
implementation. Other SWG initiatives include:

* the National Sport and Recreation Industry Directory and Database (NSRIDD)
— which provides computer access to annual updates of all ABS collected data
on the industry. NSRIDD is located in each state and territory;

* ABS sport and recreation surveys in areas such as a participation,
consumption, income, expenditure, employment, facilities and services; and

* liaison with ABS through its National Culture Recreation Statistical Unit
(NCRSU) which assists SWG to seek inclusion of the industry in relevant ABS
classifications and collections.

In summary, SWG seeks to develop greater understanding based on reliable data;
establish trends in performance; identify priority needs and actions to maintain
the industry, and prospects for new facilities and programs; analyse implications
of changes in the level, mechanisms and distribution of public and private
funding; and develop reliable statistics consistent with those of other nations, for
performance comparisons.

1Office of Recreation Development , Department of the Environment, Sport and Territories, GPO Box
787, Canberra ACT 2601
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1. INTRODUCTION AND N EED FOR INDUSTRY STATISTICS

Many Australians are in one way or another involved with the provision or
consumption of services and products in the fields of sport and recreation. These
fields are not only important to individuals. It has been established the services
provided and consumed are a major component of the national economy.

An analysis of information from the Australian national accounts collected by the
national statistical collection agency, the Australian Bureau of Statistics (ABS),
indicates sport and recreation contributed a highly conservative gross product of
$4.2 billion in 1987/88 (which is only about half the actual size as expenditure by
government, the corporate sector and those Australians living in institutions was not
included). It has been found that local government spent more on sport and
recreation annually than either of the other two spheres of government (Australia
has a federal system which includes government at the national, state (and two
territories which equate to states) and local levels).

In 1987/88, sport and recreation compared favourably with other industries such as
agriculture, forestry and fishing ($12.9 billion); electricity, gas and water ($10.9
billion); food, beverages and tobacco ($9.8 billion); cultural services ($7.8 billion);
base metal products ($5.1 billion); chemical, petroleum and coal products ($4.7
billion); transport equipment ($3.8 billion); wood and wood products ($2.6 billion);
clothing and footwear ($1.7 billion); and textiles ($1.3 billion).

The Sport and Recreation Industry is a major employer even on the basis of the
limited readily available data (the quality of which varies). The ABS was only able to
provide quality data for a few industry segments. Nevertheless, it has been estimated
that the industry employed at least 140 000 persons in 1993/94. The provision of
services for the industry had the highest employment (33 000). Jobs for males and
females varied greatly with males dominating (71 per cent) in amusement and
passive recreation, and females (56 per cent) in gambling.

The importance of sport and recreation to the national economy, and its potential for
creating employment, is not widely recognised. This lack of recognition is because
the industry has changed in only a few decades from a service industry largely
managed by volunteers, to the economic status it enjoys today, where full time staff
are increasingly replacing volunteers.

With leisure time growing for the community, continuing efforts are being made to
stimulate excellence and participation in the sporting and recreational life of the
nation. Such efforts have led to increasing demands for sound statistical information
for planning and development action, and decision making by government and
industry at all levels. Statistics are used as a basis for policy planning and
programme development, and to monitor the impact of existing policy.
Governments at all levels are major users of such statistics. Other major users include
non-government organisations, industry, unions and academia who use statistics for
funding submissions, research, etc.

Reliable, well organised and accessible statistics on the Sport and Recreation
Industry are mostly unavailable in Australia. This situation has hindered effective
planning and development and limited the ability of government and non-
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government organisations to formulate sound strategic policies. It is difficult to raise
the economic profile of an industry that is so poorly served by statistics.

2. THE NATIONAL STATISTICAL INITIATIVE

In September 1993, the Sport and Recreation Ministers Council (SRMC) recognised
the need to rectify this situation by establishing a Statistical Working Group (SWG).
SRMC consists of Commonwealth, State and Territory Government Ministers
responsible for sport and recreation in Australia. The objective of the Council is to
coordinate the development of sport and recreation.

The aim of SWG is to improve the definition, range and quality of statistics for the
Sport and Recreation Industry through the National Statistical Initiative (NSI). SWG
roles include advising on the statistical needs of the industry, and initiating studies
and the collection of sport and recreation data. This paper outlines major SWG
activities including development of reports, initiation of surveys by the national
statistical collection agency (the Australian Bureau of Statistics (ABS), how liaison is
undertaken with the ABS and the development of computer software to access the
available data collected by the ABS.

SWG has representatives from the Commonwealth (Department of the Environment,
Sport and Territories, Australian Sports Commission and Australian Bureau of
Statistics), each relevant State and Territory Government Agency and local
government. With the assistance of a consultant, the Office of Recreation
Development has undertaken most of the SWG work.

At its first meeting, SWG considered how to improve the definition, range and
quality of industry statistics. It was agreed information was needed based on
detailed statistical definitions and needs, that had been widely endorsed by potential
users throughout the industry. It was further agreed that regular, reliable and
independent data collections were required, which could only be provided by the
national statistical collection agency, the Australian Bureau of Statistics (ABS).

Sport and recreation is not well served by ABS data collections, partly as sport and
recreation is a new service industry which has only emerged in the past few decades.
It is also because the industry started with low economic importance and has only
gradually achieved its current status of major importance. Other industries with such
status have long enjoyed the advantages of regularly collected ABS data. SWG
appreciated that before ABS data collections could be unlocked, changes were
needed to ABS definitional frameworks.

Guidance was sought from the experience of other countries and the advice of
international agencies. In this regard, the Framework for Cultural Statistics (FCS),
developed after more than a decade of review and international consultation by
Unesco and the UN Statistical Office, was found to be particularly useful. In the late
1980's, this Framework was also used as a basis for a similar task on behalf of the
Cultural Ministers Council (CMC) for the Cultural Services Industry.

CMC has a similar role and composition to the Sport and Recreation Ministers
Council (SRMC). The objective of the Commonwealth, State and Territory
Government Ministers responsible for culture in this Council is to coordinate the
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development of cultural services in Australia. CMC established a Statistical Advisory
Group (SAG) to undertake its National Statistical Initiative.

3. FRAMEWORK DEVELOPMENT

At the time work commenced by SWG, an appropriately detailed Australian
statistical classification did not exist for sport and recreation. Thus, the opportunity
was taken to capitalise on the FCS work by adapting it to meet the particular needs
of Australia. A key criterion used by Unesco for FCS was:

an appropriate statistical definitional framework should be an integrated whole,
including both the social and economic aspects of cultural phenomena e.g. production,
distribution and consumption of cultural goods and services.

By adopting this holistic approach, a broad framework could be constructed to
which all kinds of known information could be mapped. Because the most robust
statistical systems, both internationally and in Australia, are those linked to
economic activities, the national sport and recreation Framework was developed
with a strong link to ABS economic, as well as social, ABS statistical collections.

The first task was to develop a National Sport and Recreation Industry Statistical
Framework, acceptable to national and international statistical agencies, which
defined the industry and its data needs, and established long term plans of how
these needs should be met by the ABS. Criteria used to develop the first edition of
the Australian Framework included that it should be:

* relevant to the needs of, and usable by, potential users, interest groups and
government at all levels;

* an integrated whole, including both the social and economic aspects of sport
and recreation e.g. the production, distribution and consumption of sport and
recreation goods and services;

* free standing, and all components are recognisable as being part of the Sport
and Recreation Industry (ensuring all aspects of the industry are included,
sport and recreation activities are clearly and comprehensively defined, and
that every activity can be clearly and unambiguously classified);

e all Sub-Sectors of the Framework are to be recognised as economically or
socially significant in the Australian community;

*  possible to collect economic and demographic statistical information for all
components (including data on income, expenditure, employment,
participation and consumption);

e compatible with national, and where appropriate international, statistical
definitional frameworks and collection systems (so that meaningful
comparisons can be made with data from ABS collections, from other countries
or international agencies);

* flexible enough to accommodate changing needs of the industry and of users of
sport and recreation statistics in the economic and social environment; and
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oriented towards the development of a viable Sport and Recreation Industry
that recognises the importance of active and passive participation in sport and
recreation to the quality of life of all Australians.

Features of the Framework

Key features of the first edition of the Australian Framework are:

the industry is divided into five Sectors and 39 Sub-Sectors (the Sectors are
Organised Sport, Active Recreation, Amusement and Passive Recreation,
Gambling and Services to Sport and Recreation). There are also a further six
Sectors and 22 Sub-Sectors of interest to sport and recreation in other industries
(the Sectors in other industries are Construction, Retail and Wholesale Trade,
Manufacturing, Finance and Insurance, Agriculture, Forestry and Fishing and
Cultural-Services);

each Sector and Sub-Sector is defined, along with its primary activities;
statistical data needs are identified for each Sector and Sub-Sector under four
functional elements i.e. participants/providers, services/products,

organisations/facilities and consumers; and

a long term statistical plan is provided for each Sector and Sub-Sector.

Hence, the Framework is a two dimensional matrix divided hierarchically by Sector
and Sub-Sector (see Appendix 1). The second dimension is four functional elements
to cover data needs in each industry segment from the creation of a service or
product through to its end use (see example at Appendix 2), as follows:

Participants/Providers - participants are those who participate in sport or
recreational activities. The data need includes the frequency, duration, nature
and level of such participation (whether as a player, coach, official, referee, etc.).
The Framework covers all those involved on their own, in groups, clubs, teams
or organisations whether on a professional, amateur or, simply, on a
recreational basis. For providers, the data need includes the number,
occupation and average income of the full, part time or casually employed
providers of sport and recreation activities and services i.e. the managers,
professionals, clerks, tradespersons, etc.;

Services/Products - of interest are the products, goods and services produced
by sport and recreation organisations. Included are the administration,
coaching and other services of sport and recreation bodies to organise, promote
and sponsor activities. The basic measure of this element is its economic value
in dollar terms. Also included are services provided externally to each Sub-
Sector by other industries such as television broadcasts of sport by the
Communications Industry. Provision of other goods and services are covered
under other industries of interest to sport and recreation. Such services include
facilities construction, and the manufacture, import/export, wholesale, retail
and distribution of goods and services for areas of sport and recreation interest
e.g. magazines, television, radio, clothing, equipment, business services, etc.;
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*  Organisations - whilst many recreational activities are undertaken informally
by individuals, families or groups, all organised sports and some recreational
services are provided by organisations whether commercial, government,
subsidised or voluntary. The role of these organisations includes provision of
facilities and venues, organisation, presentation and promotion of events,
training and development of participants. The basic measures of this element
are the income and expenditure of organisations. Also included where
appropriate, are the venues/facilities provided, a basic measure of which is the
number and capacity of venues/facilities; and

e Consumers - this element identifies those in the community, and their
characteristics (age, gender, etc.), who attend sporting events, listen to radio
and watch television on sport and recreation events. It also includes those who
attend amusement parks, horse and dog races, casinos or who buy lottery
tickets. Also included are books, videos, magazines and other material
purchased by the general public, and goods and services purchased by
participants. Consumers of these products and services are not to be confused
with active participants as defined above.

For each Sub-Sector, information in the Framework consists of:

* adefinition - sport and recreation activities covered in the Sub-Sector which
are precisely defined in line with ABS requirements. Where an organisation
engages in activities belonging to more than one Sub-Sector, the organisation is
included under its major activity. Organisations undertaking largely
administrative or management functions ancillary to a specific Sub-Sector are
generally included in that Sub-Sector;

. statistical data needs under each of the four functional elements - which
covers the detailed data need from the creation of a service or product through
to its end use for each Sub-Sector; and

e  statistical plan - this provides a long term plan for collecting data to meet the
national statistical needs of each Sub-Sector and functional element. Each plan
ultimately seeks the use of an appropriate ABS collection.

4. THE OCCUPATIONAL STRUCTURE

SWG has also developed a report on employment in the National Sport and Recreation
Industry Occupational Structure. This document was developed for consideration by
the Sport and Recreation Ministers Council, as a basis for data collections and for a
submission to the review of the Australian Standard Classification of Occupations
(ASCO - currently being finalised). This skill based definitional framework is used by
the Australian Bureau of Statistics as the national standard for production and
analysis of labour force statistics, human resource management, educational
planning, listing of job applications and vacancies, provision of occupational
information and vocational guidance. The Structure will also contribute to the
development of an industry training plan.

How employment in the industry might be defined is suggested in the Structure in
terms of skill requirements and a range of descriptors for each industry occupation.



The National Statistical Initiative 161

Its purpose is to establish specifications for the collection of national employment
statistics by the Sport and Recreation Industry and Australian Bureau of Statistics.
Again it is compatible with national and international statistical systems, and is
based on the 1986 Unesco and UN Statistical Office Framework for Cultural Statistics,
but adapted to meet Australian needs.

In ASCO, a job is a set of tasks performed by one individual in any given
establishment. An occupation is a set of jobs with identical sets of tasks. It is
recognised that every job is a little different. In practice, an occupation is a collection
of jobs sufficiently similar in their main tasks to be grouped together for classification
purposes. Most occupations in the Structure meet the other ABS criteria for inclusion
as a distinct occupation in ASCO. These criteria include:

e the occupation is consistent with the criteria identified for ASCO and the
International Standard Classification of Occupations (ISCO);

* a minimum of 300 people are employed full time and the proportion of the
national population serviced by the occupation is large (so the occupation was
clearly significant in the domestic labour force and national economy);

e  astrong user demand exists for statistics in the occupation;

e the occupation is readily codeable in ABS collections i.e. incumbents would
identify their occupation by that title and description; and

e  the occupation is delineated on the basis of a clearly unique skill specialisation
e.g. a waiter/waitress in a sport and recreation club is a unique skill
specialisation. But it is not unique when compared to similar occupations in
hotels, restaurants or cafes. Even if ASCO did not already have such an
occupation, it would not be possible to amend ASCO to cover
waiters/waitresses in these clubs. Fortunately, it will be possible to obtain this
information from the ABS Population Census, in due course, by using the
occupation and industry identifiers for sport and recreation clubs.

The Structure is in two sections, Section 1 - occupations within the industry and
Section 2 - occupations in other industries of interest to sport and recreation. Like the
Framework, it is a two dimensional matrix of vertical components (which divides the
industry into major groups and individual occupations - see Appendix 3) and
horizontal components (that covers a range of job descriptors - see example at
Appendix 4). Key features of the first edition of the Structure are:

e itis a skill based structure using the concept of skill level to classify occupations
into Major Groups and skill specialisation to delineate occupations below the
Major Group level. The 1986 ASCO classification system is used (although the
revised ASCO is likely to follow a similar system, changes are likely to improve
the hierarchy of skill levels) as follows:

Major Group 1 Managers and Administrators
Major Group 2 Professionals

Major Group 3 Para-Professionals

Major Group 4 Tradespersons

Major Group 5 Clerks



162 Ian Smith

Major Group 6 Salespersons and Personal Service Workers
Major Group 7 Plant and Machine Operators and Drivers
Major Group 8 Labourers and Related Workers;

*  within these groups, 146 separate occupations were identified - 100 for the five
core Sport and Recreation Sectors and the remainder for activities in other
industries of interest to sport and recreation;

e each occupation has been described on the basis of six indicators as follows:
-  definition of the specific occupation;

—  tasks which include the primary set of tasks required to undertake the
occupation;

-  specialisation of the title of each of job classified within the occupation;
—  skill levels for formal education, on the job training and work experience;

—  specialist skills in a field of knowledge, tools and equipment or special
techniques or skills used, materials, data, information or people worked
on or with and goods or services including information produced;

—  job descriptors which may contain descriptors such as aptitudes,
environmental conditions, physical abilities, educational and vocational
development, labour market factors, interests and competencies (criteria
to be used to develop these descriptors have yet to be established and so
the descriptors are still to be developed); and

e  within each Major Group, ASCO classifies like occupations into minor groups
and unit groups principally on the basis of skill specialisation. Each occupation
is identified under an appropriate ASCO Major and Unit group.

It is proposed that the Framework and Structure be periodically reviewed (every ten
years or so - minor revisions might be undertaken more frequently, by the Australian
Bureau of Statistics in consultation with appropriate Sub-Sector organisations of the
industry, if reliable statistics indicate changes are needed). It is to be recommended
that the Sport and Recreation Ministers Council agree the Australian Bureau of
Statistics be requested to implement the long term statistical plans of each Sub-Sector
in the Framework and take account of the Structure in undertaking data collections
on industry employment.

5. AVAILABLE DATA AND SOURCES

To support justification of industry proposals to the ABS, and for policy
development and implementation purposes, a third report was prepared on Auvailable
Data and Sources for the Sport and Recreation Industry. This publication identifies data
currently available to meet the statistical needs of the Framework and establishes
short term plans on how the industry might seek to overcome the deficiencies until
the ABS can implement the long term plans of the Framework.



The National Statistical Initiative 163

Consultation was mainly conducted with over 120 national sport and recreation
organisations, who were consulted on three occasions. Government agencies and
other industry representatives, including academia, were also widely consulted in
each state and territory. The three reports are to be submitted to SRMC for
endorsement before being presented to the ABS for implementation and are available
in AGPS Bookshops.

6. OTHER SWG WORK
Other work being co-ordinated by SWG in the period 1993/96 includes:

*  National Sport and Recreation Industry Directory and Database (NSRIDD) - which
provides computer access to all industry data collected by ABS e.g. from the
Population Survey Monitor (PSM), Population Census, Service Industry,
Household Expenditure, Time Use, Manufacturing, Wholesale, Retail and
Labour Force Surveys, and Foreign Trade and Public Accounts Statistics, etc..
NSRIDD is located in Commonwealth, State and Territory Sport and Recreation
Government Agencies and may be accessed by all Australians. The database is
to be updated annually. Although ABS information is still limited, NSRIDD
Year Two had 30 MB of data, and the Year three version is likely to have about
100 MB of tables at the national, state/territory and national/state levels;

e from August 1993, quarterly ABS surveys on sport and recreation under the
Population Survey Monitor (PSM). Each PSM covers about 2000 households
nationally (for an annual sample of over 20 000 persons). The sample was
doubled in August 1995 (annual sample of over 40 000 persons). Each survey
has core questions for household residents aged 15 years and over. Other
questions are on sport and recreation participation/services/consumption
activities (some apply to residents aged 7 to 14 years). The ABS trained
interviewers ask questions for 7 to 14 year olds from an adult. The 1993/94 PSM
results on sport and recreation participation, expenditure, reasons for non-
participation, spectators, school sport, etc., are in NSRIDD Year Two;

*  Service Industry Surveys of the Sport and Recreation Industry to obtain
information on the income, expenditure, employment and services provided by
a minimum of 30 per cent of establishments in the relevant industry Sub-
Sectors. Results of these surveys should be available by the end of 1996; and

* liaison with the ABS through the recently established National Culture
Recreation Statistical Unit (NCRSU) located in the ABS. This unit assists SWG
to seek inclusion of the industry in appropriate ABS classifications and other
standards, relevant ABS collections and the ABS Database.

In summary, the National Statistical Initiative is designed to develop greater
industry understanding based on reliable data; establish trends in performance;
identify priority needs and actions to maintain the industry, and prospects for new
facilities and programmes; analyse implications of changes in the level, mechanisms
and distribution of public and private funding; and develop reliable statistics
consistent with those of other nations, to compare our performance.
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APPENDIX 1

SECTORS AND SUB-SECTORS OF AUSTRALIAN NATIONAL SPORT AND RECREATION
INDUSTRY STATISTICAL FRAMEWORK

The Sport and Recreation Industry

Organised Sport
Australian Football
Basketball
Baseball
Cricket
Golf
Hockey
Indoor Cricket
Lawn Bowls
Netball
Rugby League
Rugby Union
Soccer
Squash
Tennis
Other Team Sports
Individual Sports (not elsewhere classified)

Active Recreation
Aerobics, Gymnastics and Other Fitness
Air Based Active Recreation
Boating and Yachting
Camping and Caravanning
Horse Riding
Martial Arts
Snow Skiing
Swimming
Ten Pin Bowling
Water Safety and Underwater Diving
Other Active Recreation

Amusement and Passive Recreation
Amusement Parks and Venues
Horse and Dog Racing
Motor Sports
Other Passive Recreation

Gambling
Casinos
Lotteries
Wagering
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Services to Sport and Recreation
Adaptive Sport and Recreation
Government and General Sport and Recreation Organisations
Sports Medicine and Exercise Science
Sport and Recreation Education
Other Sport and Recreation Clubs

Sport and Recreation in Other Industries

Construction
Swimming Pool Construction
Other Sport and Recreation Facilities Construction

Retail Trade
Boat and Marine Equipment Retailing
Camping and Bushwalking Goods and Equipment Retailing
Caravan Retailing
Cycling Goods and Equipment Retailing
Fishing Goods and Equipment Retailing
Gardening Supplies and Equipment Retailing
Golf Goods and Equipment Retailing
Shooting Goods and Equipment Retailing
Snow and Water Skiing Goods and Equipment Retailing
Underwater Dive/Surfing Goods and Equipment Retailing
Other Sport and Recreation Goods, Equipment and Clothing Retailing

Wholesale Trade
Amusement and Gambling Equipment Wholesaling
Other Sport and Recreation Goods, Equipment and Clothing Wholesaling

Manufacturing
Amusement and Gambling Equipment Manufacturing
Boat and Marine Equipment Manufacturing
Caravan and Camping Equipment Manufacturing
Surfboard /Canoe/Small Water Craft Manufacturing
Other Sport and Recreation Goods, Equipment and Clothing Manufacturing

Finance and Insurance
Sport and Recreation Insurance

Agriculture, Forestry and Fishing
Horse Breeding

Cultural Services
The Cultural Services Industry
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APPENDIX 2

EXAMPLE FOR ONE S UB-SECTOR OF AUSTRALIAN NATIONAL SPORT AND
RECREATION INDUSTRY STATISTICAL FRAMEWORK

Sub- Sector: Basketball Sector: Organised Sport
Definition

This Sub-Sector consists of units or establishments (clubs, associations or other
bodies) whose primary activities are the operation and maintenance of venues and
facilities, organisation of matches and provision of associated services including
coaching, promotion and publicity for the game of basketball, including junior
variations such as Mini Basketball, whose rules are defined by the Federation
Internationale de Basketball Amateur (FIBA).

Included in this Sub-Sector are basketball players, providers and consumers of the
above services, and venues, facilities, licensed clubs, kiosks, and associated amenities
for players, spectators and public at local, club, district, interstate, national and
international levels, whether professional or amateur.

Activities in establishments where basketball is a secondary activity, such as in
schools and in other industries of the national economy, are excluded from this Sub-
Sector with the following exceptions. Based on a request from Basketball Australia,
some limited information is to be sought in this Sub-Sector on basketball in schools
and the contribution of services from selected other industries of special interest.

Participants /Providers

Participants are professional, amateur, recreational and school basketball players,
coaches, referees, development officers, officials, etc..

Data requirements for participants are the number, gender, age, education and
income level, ethnicity, occupation, frequency, duration and type of participation,
and reasons for non-participation or discontinuing participation, and participation in
major events.

Providers are defined as those employed in Sub-Sector for whom pay as you earn
(PAYE) tax is paid in the following major occupations (minor occupations are shown
in Appendix 2 of Framework and volunteers at Appendix 3):

e  Basketball Centre Managers/Administrators;

e Coaches Development Officers (Basketball);

¢ Other Professional Sportspersons (includes Professional Basketballers);
*  Referees;

o Sports Trainers; and
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*  Other Sport and Recreation Venue/Facility Curators.

Data requirements for providers are the number employed (FTE) and income
annually in each occupation.

Services

Services provided internally by organisations in Sub-Sector are categorised as:

e  coaching, training, etc., talent identification/development of participants;
e  staging and participating in events/competitions;

*  provision of material, to promote basketball;

*  organisation of sponsors for teams, clubs, venues, facilities and games; and
*  administrative services.

Services provided externally to Sub-Sector by other industries categorised as:

e  coaching, training, etc., staging and participating in matches at schools and
tertiary education establishments;

o television broadcasts (number/duration);

e  provision/maintenance of grounds/other facilities by local government;
. videos, books, magazines and other material on basketball; and

e equipment and clothing (balls, shoes, singlets, etc.) used by participants.

Data requirements are the annual services provided and cost (national and state) in
each category.

Organisations

Organisations are clubs and other national, state and district associations that
operate basketball venues/facilities, and organise matches, categorised on a national,
state and local basis as:

J number of organisations and teams;

e  paid staff and volunteers;

o income from government, ticket sales, social/licensed clubs, membership fees,
sponsors and advertising, and other (e.g. media rights);

*  expenditure on salaries and wages, goods and services, promotion, advertising,
maintenance and other (including travel);

e  capital expenditure on venues or facilities, goods/equipment; and

e  venues and courts (indoor and outdoor).
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Data requirements are the number of organisations, staff and venues, and income
and expenditure annually.

Consumers

People who consume the services provided internally by Sub-Sector organisations
are categorised as:

e attendance by the general public at international, interstate and other matches
(including frequency of attendance);

e  non-attendance at the above matches (with reasons); and
e  attendance at coaching classes.

People consuming services provided externally by other industries to Sub-Sector
organisations, categorised as:

e  basketball on television (number of viewers);

*  purchase by participants and the general public of videos, books, magazines
and other material on basketball (national and state annual cost); and

*  purchase by participants of basketball equipment and clothing (e.g. balls, shoes,
uniforms, etc. - national and state annual cost).

Data requirements are annual number in each category, and cost of purchases.
Statistical Plan
The long term plan to meet the main data needs of this Sub-Sector is as follows:

Participants/Providers - obtain data for Participants from ABS Population Survey
Monitor and Labour Force Surveys and for Providers from ABS Population Census
and Service Industry Surveys.

Services - obtain from ABS Service Industry Surveys.
Organisations - as for Services.

Consumers - obtain from ABS Population Survey Monitor, and Labour Force
Supplementary and Household Expenditure Surveys.

Note: The above Australian Bureau of Statistics (ABS) collections are only the major
means of meeting the statistical needs of Sub-Sector. Relevant information will also
be available from many other ABS collection programmes which are too numerous
to detail here. As with other Sub-Sectors of the national economy, ABS collections
may rely on appropriately collected data from Sub-Sector organisations in some
instances.
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APPENDIX 3

OCCUPATIONAL STRUCTURE

THE SPORT AND RECREATION INDUSTRY

1.

Managers and Administrators

Amusement Park and Venue Managers/Administrators

Basketball Centre Managers/Administrators

Bookmakers

Caravan Park/Campsite Managers/Administrators

Casino Managers/Administrators

Football Managers/Administrators

Fitness Centre/Gymnasium Managers/Administrators

Horse and Dog Racing Managers/Administrators

Indoor Cricket Centre Managers/Administrators

Motor Sports Speedway/Circuit Managers/ Administrators

Multi-Purpose Sport and Recreation Centre Managers/ Administrators

Squash Centre Managers/Administrators

TAB Agency Managers/Administrators

Ten Pin Bowling Centre Managers/Administrators

Other Sport and Recreation Venue/Centre/Association/Unlicensed Club
Managers/Administrators

Lawn Bowls Club Managers/Administrators

Golf Club Managers/Administrators

Boat/Yacht Club Managers/ Administrators

Other Sport and Recreation Licensed Club Managers/Administrators

Public Policy Managers (Sport and Recreation)

Boat Shop Managers/ Administrators

Camping and Leisure Shop Managers/Administrators

Cycling Shop Managers/Administrators

Fishing Shop Managers/Administrators

Gardening Shop Managers/Administrators

Gun Shop Managers/Administrators

Underwater Dive/Surf Shop Managers/Administrators

Other Sport and Recreation Shop Managers/Administrators

Wholesalers (Sport and Recreation Goods and Equipment)

Swimming Pool Builders

Professional Builders (Sport and Recreation Facilities)

Professionals

Sports Medicine Practitioners

Sports Medicine, Fitness and Recreation Counsellors
Sports Physiotherapists

Sports and Exercise Science Professionals

Sport and Recreation Officers

Veterinarians (Horse and Dog Racing)

Aviation Instructors (Sport and Recreation)
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Fitness Instructors/Advisers

Other Sport and Recreation Teachers/Instructors
Accountants (Sport and Recreation)
Announcers/Commentators (Sport and Recreation)
Journalists/Reporters (Sport and Recreation)

Lawyers (Sport and Recreation)

Marketing/Public Relations Officers (Sport and Recreation)
Naval Architects (Sporting and Leisure Boats)
Photographers (Sport and Recreation)

Technical Producers (Sport and Recreation)

Para-Professionals

Coaches/Development Officers (Basketball)
Coaches/Instructors (Canoeing)
Coaches/Instructors (Equestrian/Horse Riding)
Coaches/Instructors (Football)
Coaches/Instructors (Gymnastics)

Coaches (Martial Arts)
Coaches/Instructors/Patrollers (Snow Skiing)
Coaches (Swimming)

Coaches (Tennis)

Coaches/Instructors (Underwater Diving)
Outdoor Education Instructors and Adventure Leaders
Fitness/Aerobics Leaders

Sports Trainers

Teachers/Instructors (Swimming)

Other Coaches (Sport and Recreation)
Community Workers (Sport and Recreation)
Recreational Charter Boat Skippers

Jockeys

Professional Footballers

Professional Golfers

Other Professional Sportspersons

Horse and Dog Racing Officials

Swimming Pool Superintendents

Driving Instructors (Sport and Recreation)
Television Equipment Operators (Sport and Recreation)

Tradespersons

Animal Trainers (Sport and Recreation)

Casino Inspectors

Casino Pit Bosses

Chefs/Cooks (Sport and Recreation Venues/Clubs /Facilities)
Farriers (Sport and Recreation)

Gardeners (Sport and Recreation Facilities)

Head Gardeners (Sport and Recreation Facilities)
Apprentice Gardeners (Sport and Recreation Facilities)
Greenkeepers

Head Greenkeepers

Apprentice Greenkeepers

Horse Trainers (Sport and Recreation)
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Horse and Dog Racing Curators/Attendants

Other Sport and Recreation Venue/Facility Curators
Caravan Repairers/Technicians

Ski Lift Operators /Maintenance Workers

Slot Machine Repairers/Technicians

Ten Pin Bowls Centre Maintenance Workers

Canvas Goods Makers (Sport and Recreation)

Horse Breakers (Sport and Recreation)

Landscape Gardeners (Sport and Recreation Facilities)
Motor Sports Mechanics

Sailmakers

Snooker, Billiard or Pool Table Makers

Sport and Recreation Boat Builders and Repairers
Supervisors Sport and Recreation Boat Builders
Surfboard/Sailboard /Canoe Builders and Repairers
Swimming Pool Construction Workers

Clerks

Administrative Assistants (Sport and Recreation Organisations)
Bookmaker Clerks

Data Processing Operators (Sport and Recreation Organisations)
Inquiry Clerks (Sport and Recreation Organisations)
Receptionists (Ten Pin Bowls Centres)

Receptionists (Sport and Recreation Organisations)

Telephone Betting Operators

Salespersons and Personal Service Workers

Bar Attendants (Sport and Recreation Clubs/Venues)
Supervisors Bar Attendants (Sport and Recreation Clubs/Venues)
Croupiers/Dealers

Massage Therapists

Office Cashiers (Sport and Recreation Organisations)
TAB Agency Clerks

Ticket Sellers (Sport and Recreation Organisations)
Waiters and Waitresses (Sport and Recreation Clubs/Venues)
Supervisors Waiters and Waitresses (Clubs/Venues)
Other Personal Service Workers (Sport and Recreation)
Sales Representatives (Fishing Equipment)

Sales Representatives (Games and Toys)

Sales Representatives (Other Sport and Recreation Goods)
Sales Assistants (Bicycles)

Sales Assistants (Camping Equipment)

Sales Assistants (Caravans)

Sales Assistants (Fishing Equipment)

Sales Assistants (Gardening Supplies)

Sales Assistants (Games and Toys)

Sales Assistants (Gun Shops)

Sales Assistants (Underwater Dive/Surf Goods)

Sales Assistants (Other Sport and Recreation Goods)
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Plant and Machine Operators and Drivers
Stationary Engine and Boiler Operators (Sport and Recreation Facilities)
Stationary Plant Operators (Sport and Recreation Facilities)

Labourers and Related Workers

Animal Attendants

Caretakers (Sport and Recreation Centres/Venues)
Cleaners Sport and Recreation Centres/Venues)

Door Attendants (Sport and Recreation Centres/Venues)
Entertainment Ushers (Sport and Recreation Centres/Venues)
Recreational Charter Boat Deckhands

Garden Labourers (Sport and Recreation Centres/Venues)
Horse Stable Hands/Strappers

Kitchen Hands (Sport and Recreation Centres/Venues)
Professional Lifeguards

Security Officers (Sport and Recreation Facilities)

Ticket Takers (Sport and Recreation Centres/Venues)
Stud Hands (Horse Breeding )

Storepersons (Sport and Recreation Centres/Venues)

Sport and Recreation in Other Industries

1.

Managers and Administrators

Finance Managers (Sport and Recreation)
Personnel Managers (Sport and Recreation)
Executive Producers (Sport and Recreation)
Purchasing Managers (Sport and Recreation)
Training Managers (Sport and Recreation)
Information Systems Managers (Sport and Recreation)
Research Managers (Sport and Recreation)
Horse Stud Managers

Canteen Managers (Sport and Recreation)
Resort Managers (Sport and Recreation)
Hostel Managers (Sport and Recreation)

Bar Managers (Sport and Recreation)

Professionals

Analytical Chemists (Horse and Dog Racing)

Food Technologists (Sport and Recreation)
Nutritionists (Sport and Recreation)

Anatomists (Sport and Recreation)

Physiologists (Sport and Recreation)

Medical Laboratory Scientists (Sport and Recreation)
Biomedical Engineers (Sport and Recreation)

Urban and Regional Planners (Sport and Recreation)
Water Treatment Engineers (Sport and Recreation)
Electronics Engineers (Gambling Equipment)

Air Conditioning Engineers (Sport and Recreation)
Aeronautical Engineers (Sport and Recreation)
Occupational Therapists (Sport and Recreation)
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Physical Education Teachers (Sport and Recreation)
Remedial Teachers (Sport and Recreation)
University Lecturers (Sport and Recreation)
University Tutors (Sport and Recreation)
Computer Systems Programmers (Lotteries and TAB)
Computer Systems Analysts (Lotteries and TAB)
Database Administrators (Lotteries and TAB)
Librarians (Sport and Recreation)

Management Consultants (Sport and Recreation)
Graphic Designers (Sport and Recreation)
Occupational Psychologists (Sport and Recreation)
Sociologists (Gambling)

Market Research Analysts (Sport and Recreation)

Para-Professionals

Fisheries Technical Officers (Sport and Recreation)
Artificial Insemination Technicians (Horse Breeding)
Electronics Engineering Associates (Gambling Equipment)
Mechanical Engineering Associates (Sport and Recreation)
Lighting Designers (Sport and Recreation)

Community Development Officers (Sport and Recreation)
Youth Workers (Sport and Recreation)

Lighting Supervisors (Sport and Recreation)

Sound Technicians (Sport and Recreation)

Child Care Coordinators (Sport and Recreation)

Referees

Umpires

Linesmen/Women

Handicappers (Racing)

Tradespersons

Maintenance Fitters (Sport and Recreation)
Aircraft Maintenance Engineers (Sport and Recreation)
Automotive Electricians (Sport and Recreation)
Air Conditioning Mechanics (Sport and Recreation)
Broadcasting Technicians (Sport and Recreation)
Computer Technicians (Sport and Recreation)
Motor Cycle Mechanics (Sport and Recreation)
Outboard Motor Mechanics (Sport and Recreation)
Vehicle Body Makers (Sport and Recreation)
Bakers (Sport and Recreation)

Supervisors Plant Nurseries (Sport and Recreation)
Nurserymen/Women (Sport and Recreation)

Tree Surgeons (Sport and Recreation)
Cabinetmakers (Billiard Tables)

Shipwrights (Sport and Recreation)
Loftsmen/Women (Sport and Recreation)
Apprentice Boat Builders (Sport and Recreation)
Tailors (Sport and Recreation)

Dressmakers (Sport and Recreation)

Leathergoods Makers (Sport and Recreation)
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Clerks

Office Secretaries (Sport and Recreation)
Office Typists (Sport and Recreation)
Word Processing Operators (Sport and Recreation)
Bookkeepers (Sport and Recreation)
Account Clerks (Sport and Recreation)
Payroll Clerks (Sport and Recreation)
Filing Clerks (Sport and Recreation)
Dispatch Clerks (Sport and Recreation)
Stock Clerks (Sport and Recreation)
Purchasing Clerks (Sport and Recreation)
Telephonists (Sport and Recreation)

Salespersons and Personal Service Workers
Insurance Agents (Sport and Recreation)
Office Cashiers (Sport and Recreation)

Child Care Attendants (Sport and Recreation)

Plant and Machine Operators and Drivers

Delivery Drivers (Sport and Recreation)

Air Conditioning Plant Operators (Sport and Recreation)
Plastics Machine Operators (Sport and Recreation)

Wood Processing Machine Operators (Sport and Recreation)
Fabric Machine Operators (Sport and Recreation)

Textile Sewing Machinists (Sport and Recreation)

Labourers and Related Workers

Supervisors, Cleaners (Sport and Recreation)

Concrete Workers (Swimming Pools)

Supervisors, Guards and Security Officers (Sport and Recreation)
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APPENDIX 4

EXAMPLE FOR ONE OCCUPATION OF AUSTRALIAN N ATIONAL SPORT AND
RECREATION INDUSTRY OCCUPATIONAL STRUCTURE

Occupation: Sport and Recreation Officers Major Group: Professionals
Definition

Sport and Recreation Officers plan, organise, coordinate and promote the use of
sport and recreation events, facilities and programmes.

ASCO Groupings
Major - Professionals.
Minor - Miscellaneous Professionals.
Unit - Other Professionals.
Tasks
Study and analyse recreation needs and resources.

Develop and implement recreation management policies for government and
community, the young, aged and disabled groups.

Offer technical and professional advice to authorities and others concerned with
providing recreation facilities.

Organise and supervise use of recreation facilities, programmes, activities and
special events. Prepare reports and assist in budget/policy formulation.

Skill Levels

Formal education - recreation management diploma.

On job training - three years.

Work experience - three to five years after completing formal education.
Specialisations

Recreation Advisers.

Activities Officers.

Community Recreation Officers.

Sport or Recreation Development or Promotions Officers.
Specialist (e.g. disabled, aged, youth) Sport or Recreation Officers.
Sport or Recreation Events Organisers.
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Specialist Skills
Field of knowledge - managing sport and recreation activities.
Skills used - coordination, media promotion, marketing, public relations.
Works with - local government, community groups.
Services produced - community sport and recreation activities and events.

Job Descriptors

Part II of the Occupational Structure is to be developed later but is likely to contain
information on seven other job descriptors i.e. aptitudes; environmental conditions;
physical abilities; educational and vocational development; labour market factors;
interests; and competencies.
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Alex McNabb!

Abstract

A summary is presented of the mechanical constraints governing the motion of the
centre of gravity of a gymnast and the rate of rotation around this balance point.
The role of elastic interactions between the gymnast and the equipment is studied
for basic single point interactions and applied to vaulting, tumbling and circles
around a bar. Optimal control type strategies focussing on the strength and
flexibility constraints and switching points from one constraint boundary to
another are suggested as useful domains for coaches to explore.

1. INTRODUCTION

I watched the Atlanta Olympics gymnastic events with amazement and in some
events almost a sense of disbelief. It is difficult to define a gymnasts objective on any
one piece of apparatus except to say he or she wishes to be awarded the highest
score, and even the judging rules keep changing over the years. Marks are assessed
on performance, aesthetic appeal, conformity to certain vague and changing
compositional requirements and a criterion called degree of difficulty. The degree of
difficulty is assessed from an historical perspective and so spectacular new moves
can gain bonus points in this department before imitators have an opportunity to
relegate them to the too-easy basket.

For any operation with a well defined objective involving a precisely specified
system, the best results are solutions of an optimal control problem. These solutions
are usually strategies for guiding the operational parameters around their constraints
in the systems parameter space. For most linear and many non-linear systems, the
optimal strategies are paths along the constraint boundaries with precisely defined
switches from one boundary to another. For example, to drive a car from stationary
at A to stationary at B in the shortest time, the obvious solution is maximum
acceleration from A to C and maximum deceleration from C to B. If the switch point
C has been chosen correctly, the car will just come to a halt at B in the shortest
possible time.

Although a gymnastic routine has no precisely-defined objective, it will be a
sequence of “tricks” and many of these will have an objective involving say a flight
path attaining greatest height or perhaps involving as many rotations about some
axis as possible. It is therefore useful for a gymnastic coach to be aware of this
constraint-boundary aspect of optimal control strategies. The important constraints
in the gymnasium are firstly the gymnasts internal constraints, fitness, flexibility and

1Depart'ment of Mathematics, Tamaki Campus, University of Auckland, New Zealand
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strength, secondly the external constraints of the performance environment, such as
the dimensions and kinematic properties of the equipment, and finally, the laws of
mechanics, which ultimately determine what is or isn’t possible.

Some of these the coach can change and since the outcome of an optimal strategy is
affected by such changes it is useful to have some idea as to which changes are
possible and the sensitivity of the outcome to these changes. It is even desirable to
have an “optimal strategy” for accomplishing the changes themselves.

It is obvious from a historical study of gymnastic performances of Olympic
champions that fine tuning gymnastic equipment has had a great effect on
performance and composition of exercises. The catapult-like response of modern
horizontal bars and women’s high and low bars allows release and catch moves like
grand circle - fly away above bars - regrasp and continue in grand circle, or one arm
grand circles which were talked about fifty years ago in jest as gymnastic dreams or
nightmares. Sprung floors, beat boards, even sprung beams and box tops have raised
performance expectations to mind-boggling levels. The coach and gymnast must of
course accommodate their expectations to the equipment available. There is no way
in which the laws of mechanics can be changed, but a good understanding of these
laws and the equipment properties will help to find optimal performance strategies
and qualitatively assess the outcome sensitivity to the internal constraints of strength
and flexibility in appropriate limbs.

I know a coach is expected to be a gymnast, a weight lifter, a mind reader, a doctor,
psychologist, an accountant, a club manager, a politician and a general dogs body,
but asking a coach to be an engineer, physicist and mathematician too might be a bit
much.

In this paper, the nature of the laws of mechanics and basic gymnast-equipment
interaction are discussed and the study is directed towards a rule-of-thumb approach
for finding optimal performance strategies. Newton’s laws focus attention on the
position and motion of the gymnast’s centre of gravity or balance point, rates of
rotation around this and the forces and moments generated by the gymnast’s
interaction with the environment. In most situations this interaction is a single or two
point elastic interaction involving swinging from a bar or bouncing a beat board or
sprung floor and the main focus of this paper is a simple model for these “one point”
elastic interactions.

2. NEWTONIAN CONSTRAINTS

For the purpose of mechanical analysis, the gymnast may be considered as a system
of particles of mass m,, at position r(t) at time t governed by internal interactive
forces maintaining the integrity of the system and driven by external forces such as
gravity and equipment contact forces. If F, is the force of interaction of the j th
particle on particle i for j#i, and F, is the sum of the external forces on particle i,
then from Newton’s 2nd and 3rd laws

m# =Y F, and F;+F; =0. 2.1)
J
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If 7= mn / M, M =Y m,, is the centre of gravity of the system then
j

Mi=Y Y F=)F=F (22)

where F, is the sum of the external forces on all the particles.

This is the classical derivation (Bullen [1]) of the well known and powerful result that
the centre of gravity 7 moves as a particle of mass M equal to the total body mass
driven by the external forces only.

This result gives rise to some useful coaching “rules of thumb”. Make sure the centre
of gravity is in the right place at all time. Relinquish contact with the environment as
late as possible and re-establish contact as early as possible. Flexibility may be the
major constraint limiting late release or early contact.

If we write r, =7 +s5; so that Zm,.si =0 and define %; the moment of momentum of

the body about the centre of gravity as h; = D _s; A [s;], then

hg = %zi:si A [mi(?+&i)]=zi‘sj/\ |:ml(rl)} = ;;si AF;. (2.3)

Now from Newton’s third law F; + F; =0 and (s,. -5 j) A E; =0 which is the sum of

the internal moments about G the centre of gravity.

We can write $; as a vector w; 5 s; normal to s; plus a vector ks; parallel to s;. In

factif @; =(s;5;)/(s; - s;) we have

(5~A5i) S; -+ S;
AL LAy +L———’ls =W A8 tks:
4

(si-s:) i (si°5,) "

Hence h; = Zsi/\ [m,-a)i A S,-] = zmi(si '51) ; _Zmi(si -a)i) S
i i i

;=

:ZIGi w; =506 (24)

if we define @, as the mean value from equations (2.4)

If the body were momentarily frozen in shape, I; would be its moment of inertia
about G and @; would be the spin vector describing its rotation rate about the centre
of gravity. The gymnast has some control over I; and how much depends on
strength in various muscle grasps and flexibility. He or she can therefore effect a
change in @; but the behaviour of 4; is governed entirely by the external moment
M, about G.
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The external forces and moments derive from gravity and the apparatus interactions.
Gravity produces no contribution to M, since

zsi/\ ’”iﬁz(zmis,-) Ag=0. (25

The external forces driving the centre of gravity are —Mg and F, from the apparatus
interaction. The gymnast has no control over M or g but can affect F, in many ways.

3. FLIGHT PHASES

In the simple case of free flight when F, = M;, =0 the gymnast has no influence over
the path of his or her centre of gravity G, and no influence on h;. However it is
possible to change I; within a range I, t0 I;..« determined by the gymnasts
flexibility (and strength, since some positions of minimum moment of inertia require
great strength to hold when o is large). This gives control over @, within the range
hg /I max » Ng/Igmn - All the kinetic energy and moment of momentum requirements
for the flight must therefore be met before release. During the flight phase, the
motion of the centre of gravity is parabolic and its maximum altitude and horizontal
velocity is predetermined by conditions at the last release point. The components of
the vector h; along any line of fixed orientation through G stays constant, but the
rotation rate about the line changes as the inertial matrix I of the gymnast about G is
changed by changing body shape. Tight tucks produce rapid rotation and full body
extension reduces the rotation rate to a minimum. Landing techniques are used to
reduce h; to zero in a fashion. Steps after landing, arm waving and secondary steps
and jumps are considered to warrant major deductions. In general, the flight phase
can accommodate a single or double somersault in many ways but again, for
aesthetic appeal, it is usually performed in “bang-bang” fashion with fastest rotation
and tightest tuck earliest in the flight followed by full extension and secondary
control measures into the landing.

By changing the inertia matrix non-symmetrically with respect to the spinal axis of
the gymnast, it is possible to re-orient the body so that somersaulting becomes
twisting or a combination of both, and visa versa. This does not produce any change
in h; . Twisting effects can be augmented by twisting motion on launch, but on the
floor and the vaulting horse this means having to live with the same twisting motion
in the landing since the take-off and the landing positions are similar. It is difficult to
aesthetically kill this twisting motion while landing and hazardous to the ankles. It is
safer to use other twisting techniques.

4. SINGLE POINT ELASTIC INTERACTIONS IN A VERTICAL PLANE.

Many gymnastic moves such as circles on a bar, tumbling moves like hand springs or
somersaults, and take-offs from a beat board involve the hands or feet interacting
with an elastically-responding bar, sprung floor or beat board and can be treated as
motion in a vertical plane normal to the line of contact of the hands or feet with the
equipment. The symmetry of the manoeuvre and equipment with respect to this
plane allows the contact between the gymnast and the apparatus to be treated as a
single-point interaction, and the motion as two dimensional.
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Suppose this point of contact P responds elastically to the interaction stresses Fj
helping to drive the manoeuvre. If the point P is at 0, the origin of our plane of
motion when the interaction stresses are zero, and at (X,Z) when the horizontal and
vertical components of F, are Fy,F,, then we will assume,

Fy=—kyX, F,=—k,Z. (4.1)

For a bar we can take ky =k, and for a sprung floor and beat board, k, will be
assumed very large so that X is negligible and the elastic displacements are
essentially vertical.

We can regard the move strategy as a process of controlling the position of G, the
gymnast’s centre of gravity relative to P and controlling I, the moment of inertia of
the gymnast about G during each phase of the move in order to produce some
desired best output at the end of the phase.

One or both of these changes can be brought about by tucks or pikes. It is strength
which governs the speed and effectiveness of these changes and during such
switches the spectrum of switching strategies may be considered as limited by the
strength constraints. Let x,z be the coordinates of G, R denote the distance from P to

G as in figure 1, and 6 the angle this line makes with the horizontal, so that

x=X+ RcosO, z=Z+ Rsin0 4.2)

Figure 1.

The external forces driving G are, —k, X horizontally and —k,Z — Mg vertically and
hence

M5 = —k X, Mz =—k,Z— Mg 4.3)

Optimal strategies will often involve rotation phases where the moment of inertia Ig
and R are as large or small as possible and the gymnast rotates as a rigid body. Many
circle moves on the bar involve a rigid body rotation starting with G vertically above

it. When G has rotated 180° and is at the bottom a fast switch is made to bring G



182 Alex McNabb

closer to the bar and reduce I+MR’ as much as possible. This position is then held till
G reaches its highest point over the bar, when a switch is made to return to the
starting position. During such rotation phases

16 =k,ZRcos 6 — k, XRsin 6

= —M[é + R(cos 0 é— sin6 62) + g]R cos 6 + M[X - R(sin 6 é— cos 6 éz)]R sin@ &4

so that
[1 + MR*10 = —M[Z + g]lRcos6 + MXRsin 6 (4.5)

If the X and Z displacements are small and X and Z are neglected we get the
pendulum equation for 6,

[+ MR?*16 = —MgRcos6 (4.6)

In general, we have a coupled system of 3 second-order ordinary differential
equations in 6, x and z of the form

16 = kR(zcos6 — xsin6)
MX = —k(x — Rcos0) 4.7)
M7 =—-Mg — k(z— Rsin0)

These lead to the interesting question as to the “best” choice of k for the bar. This
would depend on the particular move to be performed but if it were tuned to a
frequency that lifted the gymnast during the quarter circle from the bottom of a
grand circle and fell away under the gymnast in the second quarter circle, it is not
hard to imagine a strong pike-in at the bottom of the swing providing enough lift to
consider attempting a release and somersault over the bar to regrasp.

For small pendulum motion under the bar we get unstable amplification when k
=mg/R, so that the frequency of the elastic vibrations coincide with the frequency of
the pendulum motion.

If we define a new dependent variable y, so that

z=y—% (4.8)

the equations of motion become

d (19) = —MgRcos0 + kR(ycosf — xsin 0)

dt
M = —k(x — Rcos6)
My = —k(y — Rsin6) (4.9)

During phases of rigid body rotation, the moment of momentum of the gymnast
about the new origin or mean of points of static equilibrium (x=y=0) is given by
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B =10+ M(xy— yx) (4.10)

and so

% = —MgRcos0 (4.11)

The change in h* is maximised during a circle of the bar when R is a minimum for

cos 6 positive and a maximum for cos8 negative. This gives a general strategy for bar
circles however flexible the bar might be.

The system of equations (4.9) leads to the consideration of two limiting cases, the
first for small k, the “bungy-hori-bar” case, and the second corresponding to large k,
approaching the behaviour of the “museum relics” called horizontal bars that

haunted YMCA'’s and school gymnasiums in my youth. For small k, we expand 6, x,
y as power series in k. The zero-order equations are,

M, = Mj, =0 (4.12)
with the solution x, =y, =0, and
d(16
dhy _ ( 0) = —MgRcos6, (4.13)
dt dt

In this zero order approximation, G is fixed at O* and the contact point P (of the
hands) moves around the point O* at a distance R.

When k is large, a series solution in powers of € = 1/k may be sought from the
equations

%(10) = —MgRcosO — MR(jcos@ — xsin )
eMx = —(x — Rcos0) (4.14)
eMy = —(y — Rsin0)

If0=6,+6,+., x=xy+x+., y=y,+y +.. thezeroorder equations are,
. d/ . . .
Xy = RycosB,, y, = Rysinf,, Z(Ioeo> + Mgx, + M(x,¥, — yoXy) =0 (4.15)

In this case of an inflexible bar, the point G circles the bar and the hands at P remain
almost fixed in position.

For the spring board problem we consider the feet at P in board contact and
9:§+¢ where ¢ is small. We can also take k, as very large and ignore X

displacements. The gymnast runs, brings his feet together onto the board and injects
as much energy into the board as possible using a leg punch and arm lift at bottom of
the board deflection to increase the deflection to a maximum. He or she then rides
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the rebound as a rigid body. If the beat board is regarded as an instrument for
diverting kinetic energy of motion into flight, then a gymnast running twice as fast
would have the potential to rise four times higher. Hence speed of run up must be a
crucial factor in vaulting.

A vault usually requires rotation as well as height in flight, and so it is interesting to
explore the moment of momentum delivered by the board. Another important factor
in designing a board is the k factor since a slow rebound limits the horizontal speed
of entry into the board. In fact an effective entry into the board requires contact to be

made ahead of the centre of gravity. The spring-board equations involving Z and ¢
are

2
Mg?—[Z+ Rcos¢)=-Mg—kZ

J . ) (4.16)
E[(l + MR*)$] = MRsin¢[g + Z]
so that
(I+MR*)¢— MR®sin ¢ cos ¢ ¢, = kRZsin ¢ 4.17)
With ¢ assumed small, the equations for ¢ and Z become
M7 +kZ = -Mg, %[(1 + MR*)§| = —kRZ¢ + MR*$*$ . (4.18)

At the start of the launch phase, Z=0, Z=-Z, and ¢ =¢,, ¢ =4, .

The increase in moment of momentum generated by the board during the time
interval (0,t;) of the launch phase is

j(;‘ [~kRZ + M(R$)* Jpur (4.19)

where Z increases from -Z, to 0. If we assume a mean value for kz of -Mg and a mean

value of Mv] for M(R¢)* where vy is the speed of the gymnast over the beat board,
this integral is of the order

[MgR + Mv2] j;‘ odt (4.20)

This estimate gives an idea of the effect of vp and the changing orientation of ¢
during the take-off phase.
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THE USE OF MATHEMATICAL MODELS TO PREDICT ELITE ATHLETIC
PERFORMANCE AT THE OLYMPIC GAMES

Ian T. Heazlewood and Gavin Lackey

Abstract

Prediction of future athletic performances is a common practice and is usually
based on plotting the changes in world records over time. This approach is
probably unrealistic as the world record does not necessarily reflect how the best
eight athletes, that is the event finalists, have performed. Data based on Olympic
final performances may reflect a more realistic representation of changing athletic
performances over time. Prediction of the mean result in the finals for certain
athletic events at the 1996 Olympic Games and future Olympic Games were able
to be made after determining the regression equation ‘of best fit’ that matched
closely the mean results of previous Olympic finals. The events considered in the
mathematical statistical models were the 100m, 400m, Long Jump and High Jump
for both men and women. The coefficient of determinations for the regression
equations ranged from 0.6589 for the Men’s 100m to 0.9467 for the Women’s High
Jump. In all cases the regression equations derived were nonlinear mathematical
functions. For example the Men’s 100m was an inverse function and the Women'’s
100m was a cubic function. It was suggested that greater accuracy of predictions
may be possible if other factors that contribute to athletic performance, such as
altitude, wind speed and direction, were able to be included in the equations.

1. INTRODUCTION

There is a familiar saying that ‘records are made to be broken’. This implies that
there may be no limit to human performance. In spite of this, there is an intuition or
belief that there is some finite limit as to how fast a human can run or jump
(Edwards and Hopkins [1]; Morton [2]). Exercise physiology is concerned with the
improvement in human capacity and the adaptations that occur with training
(deVries and Housh [3]). Such improvement can lead to the optimisation of human
performance. Herb Elliott states in Gordon’s [4] book, “Australia and the Olympic
Games’ that “it is the inspiration of the Olympic Games that drives people not only
to compete but to improve...”. How much improvement is possible in terms of
human athletic performance is a question that will be addressed in this research.

The prediction of future athletic performance by humans is a recurring theme during
Olympic years, as well forming the basis for some stimulating ‘crystal ball gazing” in
some of the learned sports science journals. A number of researchers have attempted
to predict future performances by deriving and applying a number of mathematical
statistical models based on past performances in athletics.

Prendergast [5] applied the average speeds of world record times to determine a
mathematical model for world records. The records or data used in the analysis
spanned a 10 year period. Following his analysis, Prendergast [5] raised the question
of whether any further improvements can be expected or if the limits of human
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performance have been reached. Olympic records in many events appear to be
harder to break as each Olympiad passes, while records in many other events have
been consistently broken. For example, in the past 16 Olympiads the Men’s Long
Jump record has only been broken 4 times and the current record, 8.90m, stands from
1968. This record was set at altitude. The altitude factor is frequently cited as a major
factor contributing to this astonishing performance, even though Hay [6] has
calculated that altitude only contributed marginally to Beamon’s long jump
performance. Alternatively, in the Women'’s 400m, only held from 1964 onwards, the
record has been broken at every games with the exception of 1992. How far a human
can jump and how quickly he or she can cover a given distance are questions that
form the basis of most athletic competition.

With 1996 being the Centenary of the modern Olympic Games, is it reasonable to
expect that many Olympic Records may be broken as the elite/high performance
athletes reach for the utmost of human potential?

Edwards and Hopkins [1] applied linear regression analysis to World Records in
numerous male athletic events to predict future athletic performance. They found a
high linear correlation ranging from 0.956 to 0.991 in these events. By extrapolating
from the linear equation for each event, the researchers were able to predict with a
degree of accuracy some World Record times of future years. However, when
additional extrapolation was applied, a prediction of zero time for each event was an
outcome of this model. At some time in the future, according to this model, some
races would be run in negative time. While at this stage the record times predicted
may be quite accurate over short time periods when extrapolated into the near
future, it is obvious based on the predictions of zero time and negative times that this
straight line regression theory cannot apply to athletic events.

Athletic performance is the result of the interaction of many physiological,
biomechanical and psychological factors (Hahn [7]). Many factors may be used to
predict athletic performance. Physiological factors that may be tested in order to
attempt performance include VO, max., respiratory ventilation threshold, oxygen
transport and fuel utilisation (Noakes [8]). The testing of these factors is quite
involved and the results obtained may be complicated by prior experience in the
tests and also may not correlate well with the actual physiological processes that
occur in the athletic event (Astrand [9]).

Previous research has looked at the performance of athletes and attempted to analyse
this with respect to maximal aerobic power, the capacity of anaerobic metabolism
and the reduction in peak power that occurs with the increase of the length of the
race (Péronnet and Thibault [10]). This type of research, whilst arriving at predictions
that are believed to be extremely accurate, incorporates many factors into the model
and the data needed for the calculations requires in-depth measurement of these
factors.

Morton [2] used mathematical modelling to determine the ultimate time in which
athletic events may be completed. Factors used in these calculations include the
propulsive force per unit mass, availability of oxygen in the muscles and the energy
equivalent of the available oxygen. Predictions such as 9.15 seconds for the Men’s
100m, when compared to the present record of 9.86 seconds, suggest there is still
improvement possible.
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In summary, a number of approaches have been applied to understand and predict
human athletic performance based on mathematical and statistical models, usually
time series analysis. Some have proved reasonably successful and others have
produced predictions that are clearly inappropriate.

2. RESEARCH PROBLEM

The previous research that attempted to predict future athletic performance was
based on linear regression, a statistical-mathematical methods which assumes that a
linear relationship exists between the independent (predictor variable) and the
dependent (criterion variable). Human changes over time in this context were
assumed to be linear in nature. There are many biological changes with time that do
not or might not conform to a mathematical function that is linear (Arya and Larder
[11]). If the relationship is curvilinear, an attempt to fit a linear model to the data
may in fact be inappropriate. If the relationship is nonlinear there are a number of
potential mathematical functions that may provide a better fit to the data and
subsequently a more accurate predictive model. Such mathematical functions could
be logarithmic, inverse, cubic, compound, sigmoidal and so on. Finding the most
appropriate model should improve the prediction of future human athletic
performance when mathematical extrapolation is applied.

3. RESEARCH QUESTIONS

A number of research questions can be generated that will address the predominant
theoretical issues. These are:

1.  What is the best mathematical-statistical model that will best fit the data for
each event?

2.  Does one model fit all events?

3.  Will the mean score based on the top eight (finalists) better reflect actual
changes in human performance that have occurred in the past 70 years?

4. Will the models be identical for the different genders for each event?
5. Will the models be gender specific as well as event specific?

6.  Will the mathematical-statistical models enable the accurate prediction of future
performance?

7. How much variance will be explained in the different models for each events
for each gender?

8.  Will the derived mathematical-statistical models result in absurd predictions
that have occurred in previous research of this type?

4. RESEARCH HYPOTHESES

While prior research has used many physiological factors to predict performance, the
aim of this paper is to predict performances at the 1996 Olympic Games and future
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Olympic Games using only easily accessible data, that is, the results of past Olympic
finalists. The task of this descriptive research is to determine if there are significant
mathematical relationships between the mean of the finalists of different Olympic
events over the years. Further to this, it is generally hypothesised that the significant
relationship can be used in equations to accurately predict the average times run,
lengths and heights of jumps in specific Olympic events. The specific events that will
be predicted are the men’s and women’s 100m, the men’s and women’s 400m, the
men’s and women’s long jump, and the men’s and women'’s high jump.

The following hypotheses will be formally stated as the positive or alternate
hypotheses. The null hypotheses are assumed to be true only for the tests of
statistical significance, as statistical tests essentially test the validity of the null
hypotheses.

1. The different events will have different models of best fit as they will be
dependent on different human factors such as speed, power, endurance, speed
endurance, strength and motor co-ordination that are represented by different
mathematical-statistical functions.

2. The different genders will have different models of best fit as a result of the
different number of years that females have been competing in the different
events and as a result of females only recently adopting more stressful physical
training programs that will influence the response curves (training and
competition performance) over time.

3.  The mathematical-statistical models will be both event and gender specific.

4.  The mean score for the Olympic finalist will more realistically reflect human
performance and inferred ability in each event than previous predictive models.

5. The different mathematical models derived will provide a more accurate
prediction of future performances both for short time and long time periods.

6. More of the variance will be explained and a better model fit will occur based
on nonlinear mathematical functions.

7.  The likelihood of absurd mathematical predictions will be reduced or non-
existent.

5. METHOD AND STATISTICAL ANALYSIS

Results from each Olympiad from 1924 - 1992 were collected and the average result
of each final was calculated (refer to Appendix 1 for the raw data). The eighth
Olympic Games in Paris 1924 was chosen as the starting point for the collection of
results, as up to this Olympiad the results were only available for the first 3 places in
each event. The events selected were the 100m, 400m, High Jump and Long Jump for
both men and women. The women’s athletic program was restricted at the Olympic
Games when compared to the men’s program, and therefore different events were
included in the Olympics as the Summer Games evolved. For example, women's
track and field commenced at the 1928 Olympics and women’s results from 1928 -
1992 were taken for the 100m and High Jump, from 1948 onwards for Long Jump
and from 1964 - 1992 for the 400m. The Olympic performances which constituted the
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set of data were taken from records held by the Australian Olympic Committee [12]
and other published sources (Wallechinsky [13]).

The means for each event in each Olympic Year were calculated and then included as
a data set for analysis by the statistical software Statistical Package for the Social
Sciences (abbreviated as SPSS program version 6.1, SPSS Inc, [14]; Norusis [15]) in
order to derive regression equations for each event. Eleven different mathematical
regressions functions were available that enabled curve estimation. The eleven
functions were linear, logarithmic, inverse, quadratic, cubic, compound, power,
sigmoidal (abbreviated as S), growth, exponential and logistic (Norusis [15]). The
regression equation that produced the best fit for each event, that is, produced the
highest coefficient of determination (abbreviated as R?), was then determined using
the eleven equation approach. The specific criteria to select the regression equation of
best fit were the magnitude of R, the significance of the analysis of variance alpha or
p-value and the residuals. The residuals are the difference between the actual value
and the predicted value for each case.

The equation of best fit was then selected and using this equation a prediction of the
mean result for each event was calculated. At this stage, graphs representing the
means for each event in each Olympiad were also generated in addition to predicted
means using the appropriate regression equation.

6. RESULTS

The means of Olympic finalists in each of the selected events included in the study
are shown in Table 1. Table 2 contains the current Olympic Records and the year in
which each record was set.

Table 1. Mean Result of Finalists of the Different Olympic Events.

Year | Men's Women’s | Men's Women’s | Men’s | Women’s | Men’s | Women's
100m 100m 400m 400m Long Long High | High
Jump | Jump Jump | Jump
1924 10.82 NC 48.35 NC 7.09 NC 1.89 NC
1928 10.93 12.30 48.37 NC 7.42 NC 1.90 1.52
1932 10.48 12.06 47.53 NC 7.22 NC 1.95 1.59
1936 10.57 11.93 47.13 NC 7.69 NC 1.97 1.58
1948 10.43 12.10 47.47 NC 7.34 5.53 1.94 1.60
1952 10.43 11.87 46.62 NC 7.26 5.91 1.97 1.61
1956 10.60 11.77 47.32 NC 7.46 5.98 2.09 1.67
1960 10.28 11.42 45.45 NC 7.86 6.18 2.09 1.70
1964 10.31 11.66 45.84 54.09 7.63 6.41 2.13 1.76
1968 10.07 11.26 45.11 52.50 8.17 6.54 217 1.79
1972 10.33 11.45 45.16 51.79 8.01 6.59 2.18 1.86
1976 10.21 11.23 45.06 50.64 8.01 6.56 2.20 1.89
1980 10.39 11.19 45.24 50.42 8.18 6.90 2.27 1.92
1984 10.24 11.29 44.76 49.98 8.10 6.72 2.30 1.95
1988 10.34 10.99 4451 50.30 8.18 6.91 2.35 1.96
1992 10.10 10.96 44.47 49.79 8.22 6.85 2.33 1.95
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Timed events recorded in seconds and jump events in metres.

Table 2. Current Olympic Records.

Event Men’s | Women’s | Men’s | Women'’s Men'’s Women'’s Men’s Women’'s
100m 100m 400m 400m Long Long High High
Jump Jump Jump Jump
Olympic 9.92 10.54 43.50 48.61 8.90 740 2.38 2.03
Record
Year 1988 1988 1992 1988 1968 1988 1988 1988

Figures 1 - 8 on the following pages show graphical representations, generated by
the SPSS program, of the means of the finalists in each event with a line of best fit. In
each graph the mean result in seconds or metres is shown on the Y-axis and the years
are shown on the X-axis. It can be seen from these figures that the performances in
each event have generally been improving at each Olympic Games. Performances
that stand out from the others, such as those in the 100m and Long Jump for both
men and women at the 1968 Mexico City Olympic Games and the Men’s Long Jump
in 1936, can be observed in these figures.
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Figure 1: Graph of the means of the Men’s 100m with line of best fit.
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Figure 2: Graph of the means of the Women’s 100m with line of best fit.
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Figure 3: Graph of the means of the Men's 400m with line of best fit.
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Figure 4: Graph of the means of the Women’s 400m with line of best fit.
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Figure 5: Graph of the means of the Men’s Long Jump with line of best fit.
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Figure 6: Graph of the means of the Women’s Long Jump with line of best fit.

24

(0o
N
o

M
521-
ﬁz = Observed
0" —
* Caorpourd
1.94 - Growh
* Bpmertid
1.8 * Laogistic

'1923 190 1940 1960 1960 1970 1980 1990 2000

Olympic Year

Figure 7: Graph of the means of the Men’s High Jump with line of best fit.
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Figure 8: Graph of the means of the Women's High Jump with line of best fit.

The mathematical functions that resulted in the line of best fit for each event as well
as the coefficients of determination (R?) for each event are displayed in Table 3.

Table 3. Events, Mathematical Functions, Equations and R” Values.

Event Regression Equation * R?
Type
Men’s 100m Inverse Y =bg + (b /t) 0.6589
Women’s 100m Cubic Y =bgy +bst> 0.90175
Men’s 400m S y = e (PO +b1/t) 0.90676
Women'’s 400m S y = e(PO+b1/1) 0.84251
Men'’s Long Jump Cubic Y=bg+b 3t3 0.77735
Women'’s Long Jump Inverse Y =bg + (b1 /t) 0.89389
Men'’s High Jump Compound Y =byb.) 0.94390
Logistic 0.94390
Exponential Y = boeblt 0.94390
Growth y = ePoblt 0.94390
Women’s High Jump Compound Y =bo(b1 )t 0.94665
Exponential | Y =bpe’t 0.94665
Growth Y = ePoblt 0.94665

*Where b, =a constant
b, , b, = regression coefficients
t = year
y = mean result for each event
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Table 4 shows the regression equation and the predicted mean for each event. The
mean of the 1992 Olympic finalists is shown for comparison, the 1996 predicted
performance and the calculated percentage improvement from 1992 to 1996 is also
represented.

Table 4. Event, Regression Equation, 1992 Mean, 1996 Predicted Mean and
Percentage Improvement.

Event Regression Equation 1992 1996 % Improve
Mean Prediction
Men’s 100m Y =-6.627 + 33387.44 /1996 10.10s 10.099s 0.99
Women’s 100m Y = 24.52 - 1.71x 10?x1996> 10.96s 10.92s 0.93
Men’s 400m y = 1318 r495511/199) 4447s | 44.06s 0.99
Women'’s 400m y = gl +1055433/1996) 49.79s 48.80s 0.98
Men’s Long Jump Y =-2.76 + 1.39 x 10” x1996° 8.22m 8.29m 1.01
Women’s Long Jump | Y = 63.004-111458.44 /1996 6.85m 7.16m 1.04
Men’s High Jump Y = 0.002971 x 1.003356 %% 2.33m 2.38m 1.02
. Y = 0.002971 x e -003347x19% 237m
Y = o 5818741+0.003347x1996 2.37m
Women’s High Jump | Y = 0.000385 x 1.0043 1% 1.95m 2.02m 1.04
Y = 0.000385 x e 004291x1996 2.02m
Y = o 7/861459+0.004291x1996 2.02m

Based on the data and the derived equations, it can be seen in Table 5 that it is
possible to calculate a year when the 100m events for both men and women will,
according to the prediction equations, be run in zero time.

Table 5. Calculations of zero time for men’s and women’s 100m events.

Event Regression Equation Zero Time Equation Year

Men’s 100m Y =-6.627 + 33387.44/t 0=-6.627+33387.44/x* | 5038

Women'’s 100m Y =2452-1.71x10°x £ 0=24.52-1.71x10°x t 2429

* Where t = year
Y = time in seconds

Table 6 displays the calculated mean result of finalists in each event using the
appropriate regression equations derived.
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Table 6. Calculated Means Using the Derived Nonlinear Regression Equations.

Year Men’s Women's Men’s | Women’s Men’s Women's Men’s Women's
100m 100m 400m 400m Long Long High High
Jump Jump Jump Jump

1924 10.73* 48.32 7.14** 1.87

1928 10.69 12.26 48.06 7.20 1.90 1.51
1932 10.65 12.19 47.81 7.26 1.92 1.53
1936 10.62 12.11 47.56 7.33 1.95 1.56
1948 10.51 11.88 46.82 7.51 5.79 2.03 1.64
1952 10.48 11.80 46.58 7.58 5.90 2.06 1.67
1956 10.44 11.72 46.34 7.64 6.02 2.08 1.70
1960 10.41 11.64 46.10 7.71 6.14 2.11 1.73
1964 10.37 11.57 45.86 53.19 7.77 6.25 2.14 1.76
1968 10.34 11.49 45.63 52.61 7.83 6.37 2.17 1.79
1972 10.30 11.41 45.40 52.04 7.90 6.48 2.20 1.82
1976 10.27 11.33 45.17 51.48 7.96 6.60 2.23 1.85
1980 10.24 11.25 44.94 50.93 8.03 6.71 2.26 1.88
1984 10.20 11.17 44.72 50.39 8.10 6.83 2.29 1.92
1988 10.17 11.08 44.50 49.85 8.16 6.94 2.32 1.95
1992 10.13 11.00 44.28 49.32 8.23 7.05 2.35 1.98
1996 10.10 10.92 44.06 48.80 8.29 7.16 2.38 2.02

* Timed events in seconds

** Jump events in metres

Table 7 displays the predicted performances for each event for past and future
performances from 1924 to 2296 based on the nonlinear regression equations. It is
important to note that the performances extrapolated back to 1924 performances for
women appear realistic, however the predictions of future performance indicate that
women will surpass the men in the 100m in 2060, in the 400m in 2072 and in the
Long Jump and High Jump in 2196.

DISCUSSION

As can be seen in both Table 1 and the figures, the average result of the finalists has
been, in general, improving each Olympic year. How far this will continue is still an
open question that will be based on improvements as a result of human evolution,
enhanced training methods, innovative technology and biochemical manipulation
via performance enhancing substances (not just drugs).

The regression type that provided the highest coefficient of determination (R?) value
was used as this is an indication of the proportion of the variability that is accounted
for or explained by the X value (Norusis [15]). In each case, the X value represents
the year and the Y value represents the mean result of the finalists in each event
under consideration. By accounting for the greatest amount of explained variance, a
more accurate prediction was possible.
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The coefficient of determination for the Men’s 100m (0.6589) is the lowest of the
events tested. Therefore, this event will have the least accurate prediction of the
events tested. The predicted mean for the finalists of this event at the Atlanta
Olympics is 10.099 seconds. If a more accurate equation could be developed, perhaps
using other factors in addition to the mean results of previous Olympics, a higher
coefficient of determination might be derived and predictions of future performance
could be made with more certainty.

Table 7. The Predicted Performances for Men’s and Woman’s 100m, 400m, Long
Jump and High Jump for Past and Future Olympics.

Year 100M | 100W | 400M | 400W | MLJ WLJ MH] | WH]J
1924 10.73 12.34 48.32 59.48 7.14 5.07 1.87 1.48
1928 10.69 12.26 48.06 58.81 7.20 5.19 1.90 1.51
1932 10.65 12.19 47.81 58.14 7.26 5.31 1.92 1.53
1936 10.62 12.11 47.56 57.49 7.33 5.43 1.95 1.56
1948 10.51 11.88 46.82 55.59 7.51 5.79 2.03 1.64
1952 10.48 11.80 46.58 54.98 7.58 5.90 2.06 1.67
1956 10.44 11.72 46.34 54.37 7.64 6.02 2.08 1.70
1960 10.41 11.64 46.10 53.78 7.71 6.14 2.11 1.73
1964 10.37 11.57 45.86 53.19 7.77 6.25 2.14 1.76
1968 10.34 11.49 45.63 52.61 7.83 6.37 2.17 1.79
1972 10.30 11.41 45.40 52.04 7.90 6.48 2.20 1.82
1976 10.27 11.33 45.17 51.48 7.96 6.60 2.23 1.85
1980 10.24 11.25 44.94 50.93 8.03 6.71 2.26 1.88
1984 10.20 11.17 44.72 50.39 8.10 6.83 2.29 1.92
1988 10.17 11.08 44.50 49.85 8.16 6.94 2.32 1.95
1992 10.13 11.00 44.28 49.32 8.23 7.05 2.35 1.98
1996 10.10 10.92 44.06 48.80 8.29 7.16 2.38 2.02
2000 10.07 10.84 43.84 48.29 8.36 7.27 242 2.05
2004 10.03 10.76 43.63 47.78 8.43 7.39 2.45 2.09
2008 10.00 10.68 43.41 47.28 8.49 7.50 248 212
2012 9.97 10.59 43.20 46.79 8.56 7.61 2.51 2.16
2016 9.93 10.51 42.99 46.31 8.63 7.72 2.55 2.20
2020 9.90 10.43 42.78 45.83 8.70 7.83 2.58 2.24
2024 9.87 10.34 42.58 45.36 8.77 7.94 2.62 2.28
2028 9.84 10.26 42.37 44.89 8.83 8.04 2.65 2.32
2032 9.80 10.17 42.17 44.44 8.90 8.15 2.69 2.36
2036 9.77 10.09 41.97 43.99 8.97 8.26 2.73 2.40
2040 9.74 10.00 41.77 43.54 9.04 8.37 2.76 2.44
2044 9.71 9.92 41.58 43.10 9.11 8.47 2.80 248
2048 9.68 9.83 41.38 42.67 9.18 8.58 2.84 2.52
2052 9.64 9.74 41.19 42.24 9.25 8.69 2.88 2.57
2056 9.61 9.66 41.00 41.82 9.32 8.79 291 2.61
2060 9.58 9.57 40.81 4141 9.39 8.90 2.95 2.66
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Table 7. continued

Year 100M | 100W | 400M | 400W | MLJ WLJ MH] | WHJ
2064 9.55 9.48 40.62 41.00 9.46 9.00 2.99 2.70
2068 9.52 9.40 40.43 40.59 9.53 9.11 3.03 2.75
2072 9.49 9.31 40.24 40.20 9.60 9.21 3.07 2.80
2076 9.46 9.22 40.06 39.80 9.68 9.31 3.12 2.84
2080 9.42 9.13 39.88 39.42 9.75 9.42 3.16 2.89
2084 9.39 9.04 39.70 39.03 9.82 9.52 3.20 2.94
2088 9.36 8.95 39.52 38.66 9.89 9.62 3.24 2.99
2092 9.33 8.86 39.34 38.29 9.97 9.73 3.29 3.05
2096 9.30 8.77 39.16 37.92 10.04 9.83 3.33 3.10
2100 9.27 8.68 38.99 37.56 10.11 9.93 3.38 3.15
2196 8.58 6.41 35.19 30.15 11.96 12.25 4.66 4.76
2296 7.91 3.82 31.92 24.45 14.06 14.46 6.51 7.31

Note: Year = Olympic year
100M = men’s 100m (s)
100W = women’s 100m (s)
400M = men’s 400m (s)
400W = women’s 400m (s)
MLJ = men’s long jump (m)
WL]J = women’s long jump (m)
MH]J = men’s high jump (m)
WH]J = women'’s high jump (m)

The most accurate prediction should be obtained in the Women’s High Jump due to
the extremely high explained variance (R* = 0.94665). The predicted mean result in
the Women’s High Jump in 1996 is 2.02 metres, a result that will be known in the
very near future.

A comparison of the data in Table 1 and Table 6, which includes the 1924 to the 1996
Olympic Games, indicates that many of the predicted means are quite similar to the
actual means, especially in the Men’s and Women'’s High Jump. This is an expected
outcome due to the high coefficients of determination.

The smallest improvement, according to the prediction, is expected in the Women’s
100m where the improvement from 1992 to 1996 is only 0.93%. This would appear to
indicate that performances in the Women’s 100m will plateau from 1992 to 1996. The
largest improvement should occur in the 1996 Women’s Long Jump and High Jump.
In the Long Jump, the 1992 mean is expected to be improved by 1.04%, that is 31
centimetres. In the High Jump, an improvement of 7 centimetres can be expected.
More improvement may be expected in the Women’s Long Jump and High Jump
before future performances in these events plateau.

Using the extrapolations shown in Table 4 and comparing these to the Olympic
records in Table 2, it is predicted that an Olympic Record will be set in the Men’s
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High Jump in 1996, as the predicted mean of the finalists in Atlanta is equal to the
current Olympic Record (2.38m). This is not to say, however, that this is the only
event in which an Olympic Record will be set in 1996.

Table 7 displays the predicted results from 1924 to 2296 for both men and women.
Some of the performances for women have been extrapolated into the past. It must
be remembered that the Women’s 100m and High jump were introduced into the
Olympic program in 1928, the Women’s Long Jump in 1948 and the Women’s 400m
in 1964. The predicted performances based on the extrapolations appear to be
realistic. If the trends are extrapolated to the year 1996 to 2100 in four year intervals,
the predictions of times and distances become interesting, as female performances
are predicted to surpass males in the 100m in the year 2060 and in the 400m in the
year 2072. This trend was replicated with the long jump and high jump where the
cross-over time (where the women will surpass the men) is the year 2196.

The possible reasons for these paradoxical predictions are the greater percentage
improvements in women’s performances over the past 30 years when compared to
the men’s performances. These greater improvements in women’s performances are
the result of more recent inclusions of some Olympic events; the adoption by women
of more demanding training programs; the use of performance enhancing drugs,
especially androgenic anabolic steroids which have a more significant performance
enhancing effect in females (admitted by coaches and athletes, as well as having been
proven with female sprinters and female swimmers by IAAF and FINA drug
testing); the improvements in track and shoe technology; and the increase in years of
training as recognised by the increasing age of world record holders (IAAF [16]). It is
very interesting to note that recent sprint performances for women have been well
below current world records whereas the men have recently broken the 100m and
200m records, and run close to the 400m record.

A further extension of this work may involve the inclusion of other factors that may
enhance the predictive equations. These other factors could include athlete
physiology factors, such as the effects of competing at altitude, in high humidity and
high temperature, and biomechanic factors, such as the influence of running
surfaces, wind speed and direction. Elements such as the altitude of previous venues
and of the present venue are easily obtained, much more so than any internal
physiological factors responding to changes in the environment.

From the research domain of biomechanics, it has been shown that running economy
is greater at altitude than at sea level due to less air resistance and a decreased
energy cost (Kreighbaum and Barthels [17]; deVries and Housh [3]). To overcome air
resistance on even a calm day, sprinting at 10 metres per second requires an extra
7.8% of energy requirements (deVries and Housh [3]). Linthorne [18] reports that
sprinters run faster at altitude than at sea level competitions. The improvement in
time is due to a lesser air density and hence a lower aerodynamic drag force applied
to the athlete. The advantage gained at altitude has been shown using mathematical
models to be proportional to the altitude at which the event is held.

Wind speed and direction is also a factor in events such as Long Jump and Triple
Jump where run-up speed is important to the performance. Wind speed and
direction may not be as important in events that involve one or more laps of the track
as the head wind on one side of the track is a tail wind on the other side. However,
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the disadvantage of a head wind is greater than the advantage gained from a tail
wind of the same magnitude (Linthorne [18]).

In the domain of exercise physiology the use of physiological factors in the
prediction of results, such as the mean of finalists as in this study, requires the
knowledge of the results of the testing and measurement of each athlete in the finals.
This information at this stage of the research process is well beyond the scope of this
study.

These predictions have been made with the use of mathematical models. The true
accuracy of these predictions will be determined in the finals of these events at the
Atlanta Olympics in July and August 1996. The equations derived and the
predictions made using these are more realistic than those made in 1978 by Edwards
and Hopkins in that there is no point in which an event will be run in zero time with
the exception of the 100m running events. While the equations used by Edwards and
Hopkins [1] had high coefficients of determination (0.956 to 0.991), the calculations
made in this study should prove to be more accurate over time as the derived
equations of best fit were all nonlinear in nature. The prediction of a zero time is of
course totally unrealistic and, with time and additional factors included in the
calculations, more realistic equations and predictions may be developed.

The aim of this research was not to reduce athletic contests to mathematical formulae
but to determine if these formulae could be used to extrapolate a prediction of the
mean result of the finalists in Atlanta and in future Olympic Games. It is hoped that
the challenge of athletics will still exist within the athlete, and, if these predictions
turn out to be accurate, similar models may be developed which will allow both
coach and athlete to know the performances required to make the finals at any
particular future Olympic events.

The feasibility exists for similar work to be performed with many other events. These
events could possibly include other athletic events, swimming, cycling and other
events that are measured by the tape or the clock. This technique, if the predictions
turn out to be close to the actual mean result of the Olympic finalists, may also be
useful in determining when it might be expected that elite athletes break a certain
barrier, or to predict when athletes may not show any further progression in an
event over time.

These models have been derived in an attempt to predict the results of selected
events at the 1996 Olympic Games as well as future Olympic Games both in the near
and distant future. While a prediction for any future Olympiad can be made using
these formulae, to remain effective the mean results of future Olympic finalists must
be included in the calculation to refine the appropriate regression equations.
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Results of finalists and mean of results at each Olympic Games.

Table Al. Men’s 100m. Results in seconds.

Year 1st 2nd 3rd 4th 5th 6th 7th 8th | Mean
1924 10.6 10.7 10.8 10.9 109 11.0 10.82
1928 10.8 109 109 11.0 11.0 11.0 10.93
1932 10.3 10.3 104 10.5 10.6 10.8 10.48
1936 10.3 104 10.5 10.6 10.7 10.9 10.57
1948 10.3 104 104 104 10.5 10.6 10.43
1952 104 104 104 104 105 10.5 10.43
1956 10.5 105 10.6 10.6 10.7 10.7 10.60
1960 10.2 10.2 10.3 10.3 10.3 10.4 10.28
1964 10.0 10.2 10.2 10.4 104 104 104 10.5 10.31
1968 9.95 10.0 10.0 10.1 10.1 10.1 10.1 10.2 10.07
1972 10.14 10.24 10.33 10.36 10.40 10.40 10.46 10.33
1976 10.06 10.08 10.14 10.19 10.25 10.27 10.31 10.35 10.21
1980 10.25 10.25 10.39 10.42 10.43 10.44 10.46 10.49 10.39
1984 9.99 10.19 10.22 10.26 10.27 10.29 10.33 10.35 10.24
1988 9.92 9.97 9.99 10.04 10.11 10.11 12.26 10.34
1992 9.96 10.02 10.04 10.09 10.10 10.12 10.22 10.26 10.10
Table A2. Women’s 100m. Results in seconds.
Year 1st 2nd 3rd 4th 5th 6th 7th 8th | Mean
1928 12.2 12.3 12.3 124 12.30
1932 119 11.9 12.0 12.2 12.3 12.06
1936 115 11.7 11.9 12.0 12.2 12.3 11.93
1948 11.9 12.2 12.2 12.10
1952 115 11.8 11.9 11.9 12.0 12.1 11.87
1956 115 11.7 11.7 11.8 11.9 12.0 11.77
1960 11.0 11.3 11.3 114 115 12.0 11.42
1964 114 11.6 11.6 11.6 11.7 11.7 11.8 119 11.66
1968 11.0 11.1 11.1 11.1 11.3 114 11.5 11.6 11.26
1972 11.07 11.23 11.23 11.32 11.38 11.41 11.45 12.48 11.45
1976 11.08 11.13 11.17 11.23 11.24 11.31 11.32 11.34 11.23
1980 11.06 11.07 11.14 11.16 11.16 11.28 11.32 11.34 11.19
1984 10.97 11.13 11.16 11.25 11.39 11.40 11.43 11.62 11.29
1988 10.54 10.83 10.85 10.97 10.97 11.00 11.26 11.49 10.99
1992 10.82 10.83 10.84 10.86 10.88 11.10 11.15 11.19 10.96
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Table A3. Men’s 400m. Results in seconds.
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Year 1st 2nd 3rd 4th 5th 6th 7th 8th | Mean
1924 47.6 48.4 48.6 48.8 48.35
1928 47.8 48.0 48.2 484 48.8 49.0 48.37
1932 46.2 46.4 474 48.2 48.2 48.8 47.53
1936 46.5 46.7 46.8 46.8 47.8 48.2 47.13
1948 46.2 46.4 46.9 47.2 47.9 50.2 47.47
1952 459 459 46.8 47.0 47.0 47.1 46.62
1956 46.7 46.8 47.0 47.0 48.1 48.3 47.32
1960 449 449 455 45.6 45.9 459 45.45
1964 45.1 45.2 45.6 45.7 46.0 46.0 46.3 46.8 45.84
1968 43.86 439 444 45.0 45.3 454 454 47.6 45.11
1972 44.66 448 4492 45.13 45.31 45.59 45.68 45.16
1976 44.26 44 .40 4495 45.04 45.24 45.40 4557 45.63 45.06
1980 44.60 44.84 44.87 45.09 45.10 45.55 45.56 46.33 45.24
1984 4427 4454 4471 44.75 44.75 4493 45.35 44.76
1988 43.87 43.93 44.09 44.55 44.72 44.94 4495 45.03 4451
1992 43.50 44 .21 44.24 44.25 44.52 44.75 45.10 45.18 44 .47
Table A4. Women’s 400m. Results in seconds.
Year 1st 2nd 3rd 4th 5th 6th 7th 8th | Mean
1964 52.0 52.2 534 54.4 54.6 55.2 55.4 55.5 54.09
1968 52.0 52.1 52.2 52.5 52.7 52.7 52.8 53.0 52.50
1972 51.08 51.21 51.64 51.86 51.96 51.99 52.19 52.39 51.79
1976 49.29 50.51 50.55 50.56 50.65 50.90 50.98 51.66 50.64
1980 48.88 49.46 49.66 50.07 50.17 51.33 51.35 52.4 50.41
1984 48.83 49.05 49.42 49.91 50.25 50.37 50.45 51.56 49.98
1988 48.65 49.45 499 50.16 50.72 51.12 51.17 51.25 50.30
1992 48.83 49.05 49.64 49.69 49.93 50.11 50.19 50.87 49.79
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Table A5. Men’s Long Jump. Results in metres.

Year 1st 2nd 3rd 4th 5th 6th 7th 8th | Mean
1924 7.44 7.27 7.26 7.07 6.99 6.92 6.89 6.86 7.09
1928 7.73 7.58 7.40 7.39 7.35 7.32 7.32 7.29 742
1932 7.64 7.60 7.45 741 7.39 7.15 6.66 6.43 7.22
1936 8.06 7.87 7.74 7.73 7.73 7.67 741 7.34 7.69
1948 7.82 7.55 7.54 7.45 7.27 7.07 7.03 7.00 7.34
1952 7.57 7.53 7.30 7.23 7.16 7.14 7.10 7.02 7.26
1956 7.83 7.68 7.48 7.44 7.36 7.30 7.28 7.27 7.46
1960 8.12 8.11 8.04 8.00 7.69 7.68 7.66 7.58 7.86
1964 8.07 8.03 7.99 7.60 7.44 7.34 7.30 7.26 7.63
1968 8.90 8.19 8.16 8.12 8.09 8.02 7.97 7.94 8.17
1972 8.24 8.18 8.03 8.01 7.99 7.96 7.91 7.75 8.01
1976 8.35 8.11 8.02 8.00 8.00 7.89 7.88 7.82 8.01
1980 8.54 8.21 8.18 8.13 8.13 8.10 8.09 8.02 8.18
1984 8.54 8.24 8.24 8.16 7.99 7.97 7.87 7.81 8.10
1988 8.72 8.49 8.27 8.08 8.08 8.00 7.92 7.89 8.18
1992 8.67 8.64 8.34 8.11 8.08 8.04 7.98 7.87 8.22

Table A6. Women’s Long Jump. Results in metres.

Year 1st 2nd 3rd 4th 5th 6th 7th 8th | Mean
1948 5.695 5.60 5.575 5.57 5.545 5.495 5.38 5.35 5.53
1952 6.24 6.14 5.92 5.90 5.81 5.81 5.75 5.74 5.91
1956 6.35 6.09 6.07 5.89 5.88 5.85 5.85 5.82 5.98
1960 6.37 6.27 6.21 6.19 6.16 6.11 6.11 6.01 6.18
1964 6.76 6.60 6.42 6.40 6.35 6.24 6.24 6.23 641
1968 6.82 6.68 6.66 6.48 6.47 6.43 6.40 6.40 6.54
1972 6.78 6.77 6.67 6.52 6.51 6.49 6.48 6.46 6.59
1976 6.72 6.66 6.60 6.59 6.59 6.54 6.39 6.38 6.56
1980 7.06 7.04 7.01 6.95 6.87 6.83 6.71 6.71 6.90
1984 6.96 6.81 6.80 6.78 6.77 6.67 6.53 6.44 6.72
1988 7.40 7.22 711 7.04 6.73 6.62 6.60 6.55 691
1992 7.14 7.12 7.07 6.76 6.71 6.68 6.66 6.62 6.85
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Table A7. Men’s High Jump. Results in metres.
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Year 1st 2nd | 3rd 4th 5th 6th 7th 8th | Mean
1924 1.98 1.95 1.92 1.88 1.88 1.85 1.85 1.83 1.89
1928 1.94 1.91 1.91 1.91 1.91 1.88 1.88 1.88 1.90
1932 1.97 1.97 1.97 1.97 1.94 1.94 1.90 1.90 1.95
1936 2.03 2.00 2.00 2.00 1.97 1.94 1.94 1.94 1.97
1948 1.98 1.95 1.95 1.95 1.95 1.90 1.90 1.90 1.94
1952 2.04 2.01 1.98 1.98 1.95 1.95 1.95 1.90 1.97
1956 212 2.10 2.08 2.06 2.03 2.00 2.00 2.00 2.05
1960 2.16 2.16 2.14 2.14 2.09 2.03 2.03 2.03 2.09
1964 2.18 2.18 2.16 2.14 2.14 2.09 2.09 2.09 2.13
1968 2.24 2.22 2.20 2.16 2.14 2.14 2.14 2.12 2.17
1972 2.23 2.21 2.21 2.18 2.18 2.15 2.15 2.15 2.18
1976 2.25 2.23 2.21 2.21 2.18 2.18 2.18 2.18 2.20
1980 2.36 2.31 2.31 2.29 2.24 2.24 2.21 2.21 2.27
1984 2.35 2.33 2.31 2.31 2.29 2.29 2.29 2.27 2.31
1988 2.38 2.36 2.36 2.36 2.34 2.34 2.31 2.31 2.35
1992 2.34 2.34 2.34 2.34 2.34 2.31 2.31 2.28 2.33
Table A8. Women’s High Jump. Results in metres.
Year 1st 2nd 3rd 4th 5th 6th 7th 8th | Mean
1928 1.59 1.56 1.56 1.51 1.48 1.48 1.48 1.48 1.52
1932 1.657 1.657 1.60 1.58 1.58 1.58 1.55 1.49 1.59
1936 1.60 1.60 1.60 1.58 1.58 1.55 1.55 1.55 1.58
1948 1.68 1.68 1.61 1.58 1.58 1.58 1.55 1.55 1.60
1952 1.67 1.65 1.63 1.58 1.58 1.58 1.58 1.58 1.60
1956 1.76 1.67 1.67 1.67 1.67 1.67 1.67 1.64 1.67
1960 1.85 1.71 1.71 1.71 1.68 1.65 1.65 1.65 1.70
1964 1.90 1.80 1.78 1.74 1.71 1.71 1.71 1.71 1.76
1968 1.82 1.80 1.80 1.78 1.78 1.78 1.76 1.76 1.79
1972 1.92 1.88 1.88 1.85 1.85 1.85 1.85 1.82 1.86
1976 1.93 1.91 1.91 1.89 1.89 1.87 1.87 1.87 1.89
1980 1.97 1.94 1.94 1.91 1.91 1.91 1.91 1.88 1.92
1984 2.02 2.00 1.97 1.94 1.94 1.94 1.91 1.91 1.95
1988 2.03 2.01 1.99 1.96 1.93 1.93 1.93 1.90 1.96
1992 2.02 2.00 1.97 1.94 1.94 1.91 1.91 1.91 1.95
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MODELLING DISTANCE PREFERENCE IN THOROUGHBRED RACEHORSES

William F. Benter!, George J. Miel? and P. Diane Turnbough3

Abstract

A computer model is presented for empirically estimating racehorse performance
relative to race distance. The method uses least-squares curve fitting based on the
horse's race history. The model yields a quantitative estimate of expected horse
performance at given distances suitable for inclusion in a computerized
handicapping model. Constraints are employed during the fitting procedure to
improve predictions in cases with limited available data.

1. INTRODUCTION

In recent years various methods have been proposed for predicting the outcome of
thoroughbred horse races from fundamentals. Fundamentals in this case refers to
attributes of the horse, jockey, or race which help predict horse performance. These
methods have generally taken the form of either multiple regression or multinomial
logit models Brecher [6], Bolton [5], Benter [4]. In such formulations, horse
performance is estimated as a function of several predictor variables chosen to reflect
those attributes of the horse, jockey, or race which are thought to have significance in
predicting race outcome. While much has been written about the general form that
such models should take, little attention has been given to the selection and
formulation of the predictor variables.

As horse racing is a highly complex phenomenon, it is difficult to specify a model a
priori. An alternative is to obtain a large database of past races and perform a trial
and error empirical search for the best model. In this approach, the modeler begins
with the notion that a certain attribute such as the “horse’s fitness”, the “jockey's
ability”, or “weight to be carried” is likely to be related to horse performance, and
then formulates a predictor variable which provides a measure of that attribute. The
candidate variable is then tested for predictive significance over a large sample of
races via multiple regression or some other appropriate statistical method.

The predictive power of a given model is limited by the extent to which the predictor
variables capture the real underlying determinants of race outcome. While many of
the likely determinants are simple data explicitly available in the racing program,
(e.g. weight to be carried by the horse in today's race) others are abstract constructs
(e.g. the “current fitness” of the horse). Searching for predictive constructs and

IHappy Valley Syndicate, Hong Kong
2University of Nevada, Las Vegas, Nevada, USA

3University of Nevada, Las Vegas, Nevada, USA
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finding the best quantitative formulation of them are perhaps the most difficult
aspects of modelling horse performance. We attempt to address herein one such
predictive construct.

Races for thoroughbreds may be run at distances as short as 0.4 km to over 5 km. It is
an established tenet of horse racing lore that most horses possess an attribute which
could be called “distance preference”, that is, each horse tends to perform better at
some distances and worse at others. In estimating how distance will effect a horse's
performance in an upcoming race, a handicapper might consider the age, sex,
breeding, etc. of the horse, but he will principally consider how the horse has
performed in the past in races at different distances. In this paper, we discuss the
underlying mechanisms of distance preference and describe a quantitative method
for estimating it using only past performance data.

2. DISTANCE PREFERENCE

Mathematical models, based on principles of physics and physiology, have been
used to predict performance of human runners. The Hill-Keller model Keller [8]
which uses the laws of motion and of balance of linear momentum with a simplified
representation of the runner's energy, yields a good overall representation of world
records from 60 yds. to 10 km. Using a completely different approach, the Péronnet-
Thibault model is empirically-based, relating running performance to metabolic and
energy processes Péronnet [10]. While this model also yields good correlation with
world record performances, being strictly empirical, it gives little insight into the
underlying physical processes. Whether based on fundamental analytic laws or on
empirical data fitting, mathematical models of running rely on accurate
measurements of physiological and other parameters.

It is tantalizing to think, in view of the ready availability of computers, that
mathematical models of human running could be extrapolated to thoroughbred
racing. Whereas techniques for making diverse physiological measurements are
well-established for human subjects, even if hypothetically such techniques were to
be modified and regularly carried out on thoroughbreds, one would not expect to see
the results published in the racing program. For this reason, mathematical models
akin to those mentioned earlier are not likely to be useful for predicting the outcome
of horse races. However, it is informative to consider at a high level the analytical
background behind the concept of distance preference.

2.1 Physiological Considerations

Our model of distance preference considers the physiological interplay between the
anaerobic and the aerobic pathways of energy conversion. Our reasoning uses
human physiology Noble [9] with the understanding that the basic mechanism as
related to our model is similar for horses.

At the cellular level, energy for muscular activity is provided by synthesis of
adenosine triphosphate (ATP) either anaerobically (without oxygen) or aerobically
(with oxygen). The anaerobic pathway, rapid but of short duration, is the primary
source of energy for sprinters. Maximal exertion during sprinting results in
accelerated glycolysis and increased lactate production, quickly followed by
impaired performance. During an extended race, the replenishment of energy relies
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on the transport of oxygen to the active cells. In the aerobic pathway, the rate of
oxygen availability is a limiting factor in the conversion of energy. Oxygen
consumption rises with the intensity of exercise and the ability to sustain
consumption over time depends on the interaction of race duration and intensity.
Although independent as physiological systems, the aerobic and anaerobic pathways
of energy conversion are highly interrelated within the activity context. Even at
extremes of endurance and sprint activities, both pathways are in use. For any one
horse at any one time during a race, we envision the two systems acting in concert,
with one predominating.

As we will show below, such considerations lead us to conjecture that the individual
distance d versus preference p relationship for a thoroughbred can be idealized as a
unimodal curve p = f(d), monotonically increasing to a most preferred distance D*
and then decreasing thereafter. Hence for a given interval [Dg,D;] of distances that
the horse will race in, the portion of the idealized curve over [Dy,D;] is respectively
increasing if D1 < D*, decreasing if D* < Dy, and otherwise has a maximum at D*
inside [Dg,D;]. We thus wish to estimate the curve under the constraint that it be
unimodal and that it have no local minimum inside the interval [Dy,D1] of interest. In
order to justify this assumption, we have studied the concept of distance preference
within the framework of the Hill-Keller mathematical model of running Keller [8].
For reasons of brevity, a description of the resulting analysis is inappropriate here.
However, it is informative to discuss informally the analytical background behind
the assumption.

Consider the four variables

distance (m)
maximum attainable average velocity (m/s)
initial energy level (J/kg)

rate of energy replenishment (J/kg s)

a m<a

and two corresponding curves, a V = V(d) curve on the (d,V)-plane and a curve € on
the (o, Eg)-plane. The function V(d) represents record performances for races at

distance d. The points on the curve & denote the two types of energy attributes, ¢ for
aerobic and Ej for anaerobic, corresponding to the points on the V(d) curve. As
distance increases, the function V(d) is at first increasing (for sprints when Ej is

dominant) and then decreasing (for longer distances when c takes over). There is a
bijection d = 8(c ,E() between points (o, Eg) on € and the distance scale d, such that
V(d) corresponds to the pair of energy values 87(d)=(0,E,) on €. The optimal

energy curve £ is monotone decreasing. On that curve, Ej is high and ¢ is low for
sprint distances, while the opposite holds for long distances.

For a horse with energy pathways represented by a pair of values (¢”,E;), consider

the optimal average velocity v(d) that the horse can attain for a race of distance d.
(The Hill-Keller theory allows characterization of the function v(d) if two additional
physiological parameters are specified.) Necessarily, the inequality

v(d) < V(d)
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holds for every d. If the point (¢’,E}) is on the curve & then for the distance
d’=8(c’,E;) we have v(d’) = V(d’) and v(d) < V(d) whenever d#d’. In this case, for
a race of distance d’, the horse is capable of reaching record performance. If the point

(0’,Ej) is not on the optimal energy curve € then the curve v(d) is strictly below the
record curve V(d).

The horse’s preferred distance is a d value which minimizes the difference

Thus, at the preferred distance, the horse's best average velocity is closest to the
record average velocity. In essence, the assumption that distance preference be
unimodal means that the curve v(d) cannot approach minimally the curve V(d) over
more than one region on the d scale because of the interplay between the

physiological parameters ¢ and Eg. We can quantify distance preference as a
composite function,

p(d)=0oy(d)

where ¢(x) is a strictly decreasing function for x > 0, so that p is greatest when ¢ is
smallest. This means that the horse is capable of performing best for distances d

which yield high values of p. To illustrate, if we take ¢(x) = e~*x, k > 0, and if (¢’,E})
is on the optimal energy curve € then p(d) < 1 with equality only when d=d’. If

(0’,E{,) ¢ € then p(d) < 1 for every d and for a distance interval [Dg, D1] we again
expect p(d) to be unimodal with a maximum inside that interval.

2.2 Objectives and Limitations

The goal of the modelling procedure is to be able to estimate, for any given race
distance, the effect that the distance will have on a particular horse's expected
performance. The data available with which to make this estimate is the record of the
horse’s past races. In each of these races the distance of the race is known, and we
can use some measure such as finishing position or elapsed time, to quantify the
horse's performance. This will give us a set of data points from which we can
estimate the distance/preference relationship.

Two main difficulties arise in attempting to estimate this relationship. The first is that
the observed performance in each of a horse's past races is not only a function of
distance, but also of many different factors such as fitness, type of surface, jockey
skill, etc., as well as a number of unknowable random factors. Observations of an
individual horse's performances over time at races of identical distance show that
there is considerable variability in performance which is not related to distance. For
the purposes of our modelling procedure, we will assume that this state of affairs
amounts to the following: Each measured past performance of a horse contains some
‘signal’ about its distance preference, but is corrupted by a large component of
Gaussian ‘noise’.
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The second difficulty is that the number of past races may be very small. The high
level of random noise in each observed past performance dictates that a large sample
size is necessary to make significant statistical estimations. Unfortunately, even by
the end of a horse's career the total number of past races is barely adequate for
making confident estimates, and the model will be required to make estimates for
horses at all experience levels, including those with only a few past races. Our goal
then is to derive a robust algorithm that produces meaningful estimates based on
sparse, noisy, and heterogeneous data.

3. MODELLING PROCEDURE

The available data consists of a series of distance/performance observations
corresponding to each of a horse's past races. The performance measure used by the
authors is an adjusted finish position which places each performance on a scale of 0.5
to -0.5. We need not describe this measure in detail since the specifics of it are not
important to the following discussion.

The first step in the calculations is to normalize these past performances so that the
mean performance is zero. This is done because the desired output of the distance
preference model is an estimate of only the effect that distance will have on the
horse's performance, which will be added to other variables within the context of a
comprehensive computer handicapping model. At this stage, the data can be
represented as points on a distance/performance plane.

The second step is to perform a constrained parabolic least squares fit through this
data. (See Figure 3 below) A second order polynomial was chosen for reasons of
simplicity, robustness, ease of control and because the parabolic shape is adequate
for representing the idealized distance preference relationship mentioned earlier. In
view of the sparse and very noisy data, fitting with higher order polynomials or
splines (Bartels [3]) is not warranted, being harder to control and more prone to
following random aberrations in the data.

3.1 Fictitious Data Points

A least squares parabolic fit requires at least one observation at each of three separate
distances. However, even when a horse has raced at only two separate distances,
there is meaningful information to extract about its preference. To deal with such
cases, we employ the device of adding fictitious data points to the horse's record
before the parabolic fitting. The placement of these fictitious data points is always at
intervals along the distance-axis. These fictitious data points, which we expediently
call tack points, tend to flatten the parabola toward the distance axis, namely, toward
zero preference when there is insufficient data to infer otherwise.

The tack points serve a much larger purpose than simply allowing a solution in cases
of less than three observations: they also tend to prevent the least squares procedure
from simply "fitting the noise" in cases with limited data. As an example, consider
the case of a horse with four races as represented in Figure 1. The solid line shows
the shape of the curve fitted using only the real data. The dashed line shows the
shape of the curve fitted to the data including three tack points.
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Figure 1: Effect of three tack points

Given the assumption that the random noise in each observation accounts for much
more of the variance than the effect we are trying to model, the second curve appears
to be a more plausible estimate of a horse's distance preference. In a sense the tack
points are a way of introducing our prior knowledge that the likely magnitude of a
horse's distance preference is small relative to the random variation in performance.
Varying the number and placement of the tack points allows the modeler
considerable flexibility in fine-tuning the model. Adding more tack points makes the
curve more inflexible, leading to more conservative estimates of distance preference.

Large estimated distance preferences would only occur when a horse had many
races exhibiting a clear pattern.

Via trial and error, we have found that a scheme using three tack points on the
distance axis, one positioned slightly to the left of the distance of the shortest race in
which the horse has participated, one slightly to the right of the longest race, and the
last at the midpoint between the other two, produces good estimates. A convenient
feature of the tack points approach is that as the number of real observations increases
the effect of the tack points diminishes. The shape of the fitted curve evolves
smoothly as a horse's career progresses, from being dominated by the artificial data

in the early stages, to closely following the real data as the number of races becomes
large.

3.2 Disallowed shapes

Even with the use of the tack points, in certain cases, particularly when the horse has
had few races, the shape of the fitted curve will violate our original assumption that
the curve be unimodal. We presume that this is the result of random noise in the
observations. In order to disallow these shapes while still retaining as much of the

information as we can from the data, we use a special procedure to adjust the shape
of the polynomial.
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A frequent practice in computer aided design (CAD) is the interactive use of a
graphics terminal in order to adjust parameters defining a curve until the curve has
an acceptable shape. In 1962, Bézier and Casteljau, while working on CAD systems
for the French car companies Renault and Citroén respectively, developed
independently a mathematical method for doing this. Since the Renault software was
described in the open literature by Bézier, the underlying theory often bears his
name. The resulting methodology has since evolved and is now established as a
major tool in computer graphics (Bartels [3]).

In its simplest form, a Bézier curve over an interval [a, b] is a polynomial of degree <
n, represented as a linear combination

p(s)=§BiB:‘(s)

of n+1 Berstein polynomials

= e

Each coefficient B; is associated with a control point on the plane,
Q(t,B;), t=a+i(b—a)/n

The abscissae t; of these n+1 control points are equally spaced with ty = a and
th=b.

It is known that if the control points are monotonic, convex or concave so is the
resulting curve p(s). The curve always passes through the end control points,

p(a) = Bo and p(b) = Bn, and it is contained in the convex hull of the n+1 control
points. Since this convex hull is often the same as the region enclosed by the Bézier
polygon, obtained by connecting successive control points and finally connecting Qn

back to Qg, changing the value of a coefficient B;, which is equivalent to moving the
corresponding control point Q; up or down, has a direct and intuitive effect on the

function p(s). In practice, the user adjusts the B; values until the plot of p(s) acquires
an acceptable shape.

For our purpose of estimating the distance preference of a horse, we use a Bézier
curve of degree n = 2 over the unit interval [0, 1],

p(s) =B,Bj(s) +B,Bi(s) + B,B3(s) @

where
Bj(s)=(1-s)", Bi(s)=2s(1-s), Bj(s)=s’

The corresponding three control points are

Q0B Qi 3B} QuilLp)
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and the following properties are valid:
1.  The parabola passes through the two points Qg and Q>.

2. The curve lies within the triangle with vertices Qo, Q1, and Q».

3.  There is a local minimum inside the interval (0, 1) if and only if B, < min(B,,B,).
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Figure 2: Effect of the Bézier adjustment

From physiological considerations described earlier, we do not allow a distance
preference curve to have a local minimum inside the distance interval of interest.
Property 3, illustrated in Figure 2a, provides a simple means of adjusting the shape

of inadmissible curves defined over the unit interval. In a computer program, the
single overwrite statement

By:= max(Bl,min(BO, B, )) )

accomplishes the desired task. If B; > min (Bo, B1) the parabola has no local minimum
inside (0, 1) and the parabola is left unchanged. Otherwise, in order to flatten the
local minimum, we move the middle control point Q; upward until it is aligned with
the lowest of the two other control points Qg and Q,; see Figure 2b.

3.3 Algorithm

The following procedure combines the above adjustment with conventional least
squares fitting of a parabolic curve through m data points (d;, pi), 1 <i<m.

Step 1. Choose Dy < min d; and D; > max d;, let A=D; — Dy normalize the distances
d; to the unit interval,

si=(di-Do) /A,  1<i<m,
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and fit a parabola

() = Yo+ Y18 + Y2 8
through the m points (s;, p;) by solving the 3 x 3 system of normal equations,
m Is, sy, Tp,

Ts, Ist Zs) || v, |=| Zpss
Is? ) Zst| vy, Tp,s?

1

Step 2. Execute the following statements to possibly adjust the least squares
parabola:

1 )
By:= max(Yo + Eermln('Yo/Yo +Y, 17, ))

Y= 27 +Y1+ Y, — 2B,

Y1:= 27,2,
1 m
Yo'= ;;(pi =5 = stiz)

Step 3. Find the coefficients of the corresponding curve
p=1f(d)=cg+cyd+cypd? 2
for the actual distances over [Dg, D; ]:
=,/ A
= % —2¢,D,
Co:="Y, - ¢,D, — ¢,D?

The last step is a straight-forward consequence of the transformation
d-D, )
=f(d
P15

The second step alters the least squares parabola of the first step if there is a local
minimum inside the unit interval.

The correspondence between the standard form (3) of the least squares parabola and
its Bézier representation (1) is given by

Bo:Yor Yo = Bos

1
Bl :YO+§Y11 Y1 :_2B0+2B11

B2:Y0+Y1+YZ, YZZBO_B1+Bz,
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The first statement in Step 2 corresponds to (2) in the Bézier representation. If
B, =7, +37; then the next three statements leave all coefficients v,,Y,,Y, unchanged.
Otherwise, two types of adjustments take place. First, the flattening of the local
minimum, created by moving the middle control point upward, alters the values of
Y, and vy, but by itself leaves y, unchanged. However, the second adjustment,
carried out by the last statement in Step 2, evaluates the best least squares estimate of
Y, for the parabola with new values of v, and 7y, resulting from the first adjustment.
The second adjustment, a vertical translation of the Bézier-reshaped parabola, occurs
only when v, and v, have been altered.

Several observations are in order. The reshaping of the parabola, via movement of
the middle control point, is meant to occur, if at all, in cases of limited data. The
scheme was designed under the working assumption that the shape of the distance
preference curve is as important as its fit through the (extremely noisy) data. It turns
out, as we will show later, that this assumption is borne out statistically. Instead of
applying a sophisticated numerical method for least squares estimation with
inequality constraints (e.g., see section 28 in Bjorck [2]), we opted for the above
scheme for reasons of robustness, simplicity, and easy experimentation within the
overall handicapping system.

4. DISCUSSION

The estimation procedure described above presumes that thoroughbred horses
possess significant distance preferences and that these can be estimated from their
past races. The extent to which this is true cannot be determined without empirical
tests on actual data. In what follows, we show statistically that horses do possess this
trait and that the procedure for estimating it described above is quite effective. '

SAMPLE DISTANCE PREFERENCE DATA AND ESTIMATED CURVE
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Figure 3: Estimated curve for a horse with 41 races

Figure 3 shows the data points and fitted curve for a horse with a relatively large
number of races. The tack points, (not shown in the figure) have little effect on the
shape of the estimated curve. No Bézier adjustment was necessary in this example
because the distance preference curve does not have a local minimum.
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4.1 Empirical Validation

Having found the coefficients of the distance preference parabola, we are now able to
make specific predictions of horse performance at given race distances. With access
to a large database of horse performances, statistical tests of the validity of these
predictions can be made. The authors have carried out such tests on a database of
4,602 races run in Hong Kong during the years 1986-1996. The sample contained
47,404 individual horse performances with full prior career records available for
each. Consider the following two linear regressions:

E{Y} = bo +b1 X1
E{Y} = bo +b1 X1 +b2 X2
where the response variable Y and the two predictor variables X; and X; are:

Y = normalized finish position in today's race
X1 = average normalized finish position in past races
Xp = distance preference estimate

The results of these regressions are summarized in the following two tables.

coefficient t-ratio
bo 0.000 0.0
b, 0.598 62.0

coefficient t-ratio
by 0.000 0.0
b, 0.585 51.8
b, 0.710 21.6

The r2 values of these two regressions are 0.075 and 0.084 respectively. The large
value of the t-ratio achieved by the distance preference estimate X, indicates the high
significance of this variable and the increase in r2 between the two regressions
demonstrates its large positive contribution to the prediction of horse finishing
position.

Trial and error experimentation by the authors have shown that the predictive power
of the model is very sensitive to the number of tack points used and their placement.
The optimal number of tack points seems to be three or four. Further tests both with
and without the Bézier adjustments however show that this refinement had only a
statistically insignificant effect on the accuracy of the estimations in this data sample.

4.2 Further Improvements

While the procedure described above evidently extracts a significant amount of
predictive information from the available data, what fraction this represents of the
amount achievable by the hypothetical ‘optimal” model is not known. The authors
believe that further improvements could produce significant gains. Other estimation
procedures, perhaps employing curves other than the parabola used above, may
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yield improvements. Also, incorporating the assumption that a horse's distance
preference is not necessarily constant over time may have merit.

This model represents the result of a practical effort to produce quantitative
estimates of one attribute of thoroughbred racehorses. Its principal strengths are its
simplicity and robustness. Inclusion of a sufficient number of tack points, and the
Bézier adjustment procedure to prohibit disallowed shapes, ensure that the model
will always produce a reasonable estimate of distance preference even in cases when
little or no data is available. This reliability makes it suitable for inclusion in a fully
computerized handicapping program which does not require human supervision.
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BETTING STRATEGIES IN HORSE RACES

Ravi Phatarfod!

Abstract

In this paper we consider the strategies a gambler may employ in situations such
as horse races. We assume that the gambler knows which horses have odds which
are favourable to him, that he wants to bet in such a way as to have a given
positive expectation of win on a race, and that he wishes to minimise the
probability of loss of his finite capital. We show that the best strategy is to bet on
all the horses whose odds are favourable so as to minimise the probability of loss
on a race. We further show that in order to achieve the last objective it is advisable
to have a bet on a horse with fair odds, and at times on a horse with unfavourable
odds, in addition to a bet on a horse with favourable odds.

1. INTRODUCTION

The use of probability theory to investigate gambling strategies is not new; see, Feller
[1], Dubins and Savage [2], Epstein [3], Breiman [4], Rotando and Thorp [5], to name
just the more recent contributions. Feller showed that if a gambler’s objective is to
increase his initial capital of b by an amount a (a < b), and the game is unfavourable
to him, then for even money games, and with a view to minimising the probability of
his ruin, his initial bet should be for the amount a, and if he loses that game, his next
bet should be for the amount 2a etc; if however the game is a favourable one, he
should bet as small an amount as possible. Rotando and Thorp showed that if the
game is for even money and the game is a favourable one, i.e. p the probability of
win is greater than %}, then to maximise the exponential rate of growth of the
gambler’s capital, the gambler should bet the fraction p - q (where q =1 - p of his
capital at every stage of the play. Thus, by and large, the strategies explored so far
are the ones the gambler may employ from game to game in a sequence of games. In
this paper we consider the strategies a gambler may employ within each game.
Horse racing provides the most common example of this situation. We shall discuss
the subject matter in the context of horse racing, although the conclusions reached
are valid in other contexts also. Within each game (i.e. a horse race), there are a
number, (usually about ten to twenty) of mutually exclusive betting propositions (i.e.
horse to win). We shall assume that the gambler knows the probability of each horse
winning the race, and is offered odds (or prices ) about these, so that he can divide
the race field into the three categories of favourable bets (i.e. those for whom the
expectation is positive), fair bets (i.e. those for whom the expectation is zero) and
unfavourable bets (i.e. those for whom the expectation is negative). We assume that
there is at least one favourable bet in a game and that the gambler is able to bet on a
sequences of such games. We also assume that he has a large but finite capital and is

1Department of Mathematics, Monash University, Clayton Victoria 3168
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playing against an infinitely rich adversary, and that he wants to bet in such a way as
to produce a given (positive) expectation of gain per race. The question is: How
should he bet if his objective is to minimise the probability of his ruin, i.e. the
exhaustion of his capital?

For example suppose in a race there are, among others, three horses A, B, C.

The odds on offer against them winning the race are 5/1, 3/1 and 3/1 and the
probabilities of them winning are 0.2, 0.3 and 0.3 respectively. The question is: What
bets should the gambler take? Should he bet on the horse with the most favourable
odds? Or, should he hedge his bets, i.e bet on all the horses with favourable odds?

We shall show that the probability of his ruin is a decreasing function of the
probability of win on a race (with the same expectation of gain), so that in the
situation above, rather than bet only on horse A, he should bet on all the three horses
A, B, C. Indeed, if the gambler is in the fortunate position of being offered such bets
in a succession of races, then with a capital of 80 dollars, betting 8 dollars on A above
(to give an expectation of gain of $1.60 per race) makes the probability of his ruin
equal to 0.4662, whereas betting amounts 2, 3 and 3 dollars on A, B and C
respectively (to give the same expectation of $1.60 of gain on the race) would make
the probability of his ruin considerably smaller, namely 0.00013.

On the surface the difference between the two probabilities is striking. However, we
need not seek too far to see the reason for this difference. The probability of ruin
depends very heavily on the results of initial games, and the probability of getting a
succession of losses when the loss probability per game is 0.8 is far greater than what
it is when the loss probability per game is only 0.2. So, although there is not much to
choose between the two alternatives when the capital is infinite, the difference
between the loss probabilities per game has a telling consequence when the capital is
finite. In practical terms the latter alternative has another advantage over the former.
In practice, a gambler is more like to be able to correctly assess that in a particular
race, the probability is 0.8 that the winner would come from one of the three horses
A, B and C than correctly apportion probabilities of win to individual horses.

If now, we suppose that the situation is such that there is only one favourable bet in
the race, e.g. A as above and he is offered a fair bet on horse D at even money in the
same race, then betting 8 dollars each on both A and D would (if such situations were
available in a succession of races) be preferable to betting 8 dollars on A alone as the
probability of ruin now is 0.37729, somewhat less than 0.4662 for betting on A alone.
More surprisingly, the probability of ruin for the combination of A and an
unfavourable bet in the same race (albeit only marginally unfavourable) is less than
what it would be for the single bet on A. These conclusions go counter to our
intuition that the gambler must avoid, at all cost, fair and unfavourable bets.

The preceding discussion was by necessity a hypothetical one; in practice a gambler
intending to bet on a succession of races in a season, or a life-time, would meet a
large variety of betting propositions. What the above tells us is that, a gambler must
consider only races where there is at least one bet which is favourable, and should
bet such that the probability of loss on a race is minimum, and moreover to satisfy
this objective, even take fair and unfavourable bets.
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2. PRELIMINARIES

Let X be the net gain made by the gambler on a game, be it with one bet or more than

one bet and let E(X) = p > 0. Let us assume we have a sequence of games, for each of
which the net gain has a distribution, the same as that of X. Then we have a sequence

{X} of independent and identically distributed random variables, and S, = le is
1

the net gain after n games. If the gambler’s capitalisb >0 {Sn}, (n=0,1,2,3,...)isa
random walk process with an absorbing barrier at -b, the gambler’s ruin
corresponding to the absorption of the random walk at -b. A convenient tool used to
derive the probability of absorption in random walks is Wald’s Identity (Wald [6])
which is as follows:

Let N be the first time the random walk is absorbed, and let P(z) be the probability
generating function (p.g.f.) of X. Then,

B[z P(z) ]| =1 (1)

We shall also need the following lemma: For a random variable X with E(X) > 0, there
is a unique value z1, (0 < z; < 1) such that P(z;) = 1.

Putting z = z1 in (1) and ignoring the overshoot over -b, we have

P(R) = 7" )

Let’s now consider the scenario described in the introduction, where we have three
horses A, B and C with odds 5/1, 3/1 and 3/1 and probabilities of win 0.2, 0.3 and
0.3 respectively. Suppose, we bet the amounts 2, 3 and 3 dollars on A, B and C. X
now takes the values 4 and —8 with probabilities 0.8 and 0.2 respectively, so that we
have P(z) = 0.8z% + 0.2z-8. Now, the probability of ruin for this case with b = 80, is the
same as when we have b = 20 and X takes the values 1 and -2 with probabilities 0.8
and 0.2. The resulting p.g.f. is P(z) = 0.8z + 0.2z°2, and taking P(z) = 1, yields
z; = 0.6404. The approximate value of P(R) obtained from (2) is 0.00013. Table 1 gives
the approximate values of P(R) obtained from (2) with b = 80, for various possible
combinations of bets for the game (all with the same expected gain on the game). We
notice that P(R) decreases as q the probability of loss in the game decreases.

Table 1 P(R), the probability, of the gambler’s ruin with a capital of 80 units

BettingCombina | 8 unitsonA | 8 units onB | 3.2 units on | 4 units each | 2 units on A,

tion only (or C) only A, 4.8 units [ onBand C 3 units each on
on B (or C) B, C

Prob. of loss on | 0.8 0.7 05 0.4 0.2

a game, q

P(R) 0.4662 0.2769 0.0591 0.0173 0.00013

In the general theory given in the rest of the paper, we shall assume that we have
either a unit bet on the game (Section 3), or else the primary bet is of unit amount
(Sections 4 and 5). In this case, the net gain is unlikely to assume integer values;
however, with b large and the loss per game restricted to under 2, the overshoot is
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small and may be neglected, and P(R) is approximately given by (2). The problem
therefore reduces to comparing the values of z; obtained for various betting
strategies. The z; is the unique positive solution (0 < z; < 1) of P(z) = 1, where the
definition of p.g.f. is extended to include the case of non-integer valued random
variables.

3. BETTING ON FAVOURABLE BETS

For betting only on favourable bets, we can bet amounts on each horse, so that the
net gain is the same. Let p be the combined probability of a win and q(= 1 - p) the
probability of a loss. We shall assume the total bet is one unit; thus c the overall odds

we are getting is such that cp — q = pu > 0. The net gain is the random variable X
assuming values c and -1 with probabilities p and q respectively.

Here P(z) = pz**V/P 4 gz, 3)

It is fairly easy to show that (for constant p) the root z1(0 < z; < 1) of P(z) = 1
decreases as p increases from 0 to 1.

To see how z; depends on p and p, we let z; = 1 - §, and use Taylor series expansion
for the expression in (3) with z replaced by z; and solve for 6. We obtain

2up
(1+m)(q+n)

Thus, (for a constant value of ) as p increases, 8 increases, and since P(R) = z?, P(R)
decreases. Table 2 gives the variation of the values of z; obtained from (3) with
respect to values of q for p = 0.05, 0.1, 0.2, and it can be seen that as q decreases, z;
decreases. Indeed, since the ruin probability is an exponential function of z;, the
effect on the ruin probability is very much greater.

Table 2 z;, values for values of q and p for favourable games.

U q 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

0.05 05145 | 0.7163 | 0.8156 | 0.8744 | 0.9132 | 0.9407 | 0.9612 | 0.9770 | 0.9897

0.10 0.3458 | 0.5640 | 0.6966 | 0.7846 | 0.8469 | 0.8932 | 0.9291 | 0.9576 | 0.9808

0.20 0.2183 | 0.4101 | 0.5556 | 0.6667 | 0.7535 | 0.8229 | 0.8795 | 0.9265 | 0.9662

4. BETTING ON AN ADDITIONAL FAIR BET

Suppose now there are one or more favourable bets in a race with total probability of
win p and expectation u > 0, so that the odds offered are givenby c= (1 + u)/P-1.
Let us assume we have an additional fair bet in the race with probability of win p’

i.e. the odds are q’/p’, where q" =1-p’. Whatever amount x we have on the fair bet
leaves our expectation of the net gain unchanged. Betting a unit amount on the
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favourable bet and an amount x units on the fair bet, the net gain X has the
distribution

X c —x xq'/p -1 -1-x
Pr p 4 l-p-p
To minimise the probability of ruin by betting on this game (and successive such
games), we should take that value of x such that the root z; (0 < z; < 1) of the
resultant equation P(z) = 1, i.e.
pzt + P =2 1 - p—p' =0 @

takes its minimal value.

Putting z = 1 — § and using Taylor series expansion for the left hand side of (4), we
obtain

2u
c(c + Dp =2x + x%q’/ p’

For given c and p, the maximum value of 8 is obtained when x =p’/q’. Substituting

the value of x in (4) we solve for z. Table 3 gives the z; values obtained for p = 0.1,
02,p=0.1,02,0.3,04,05and p’=0.1,0.2,0.3, 0.4. The required z; values are those
which correspond to the case u > 0. The corresponding z; values for the same p with
only favourable bets is given in each case. From the table we note, for example, that
for p = 0.2, the single favourable bet at p = 0.2 gives z; = 0.9265. However, with the
additional fair bet at p” = 0.5, yields z1 = 0.9071, so that with b = 40, P(R) decreases
from 0.04723 to 0.02026.

We note that as p’ increases the value of z; decreases. So if an additional fair bet is to
be taken, the shorter the odds the better it is. Ideally, of course, we should take a fair
bet at p” =1 — p, but quite obviously, in practice this would be unattainable, as it
would mean there is no loss, only a possibility of a gain.

5. BETTING ON AN ADDITIONAL UNFAVOURABLE BET

Suppose now we have, as before, a favourable bet (or many favourable bets) of one

unit with total probability of win p, and expectation p > 0. Let us assume we have in
addition an unfavourable bet with probability of win p’, and let us assume the odds
offered are q’/p’—u to 1, so that the unfavourability factor is u > 0. It is obvious that

to maintain the expectation of the total transaction of the two bets to i, we need to
increase the amount on the favourable bet. Let x > 0 be the increase of the amount on
the favourable bet and y the amount on the unfavourable bet. Since the loss on the
unfavourable bet (due to its unfavourability) has to be compensated by the extra gain
on the favourable bet, we have the relation p’uy =ux. The net gain X on the game
has the probability distribution
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X cl +x)—y G /'p —uwy -1+ x) -1-x-y
Pr. p r 1-p-p
so that the equation P(z) = 1 becomes
pz(1+x)(1+c) +p/Z(1/p'—u)y S o A B p- p/ =0 (5)

As before, to find the values of x and y so that the root z; (0 < z; < 1) of (5) takes its
minimum value, we let z = 1 — §, expand the left hand side of (5) by a Taylor series

expansion and solve for 8 in terms of 4, p, p’, ¢, x, y and u. The maximum value of §
is obtained when

_ ~(c +DQRc +Dppu/pu+2+pul —p)/u
) R s DR (e I T

Using the value of y and x given by x =p”uy/u in (5) we solve for z. The values of z;

forn=0.1,0.2,p=0.1,0.2,0.3,04, p’=0.1,02,0.3,04, 0.5 and u = .01, .05 are given
in Table 3. The asterisks * in the table correspond to the cases where the values of x
and y are negative, and are therefore not admissible. The symbols # correspond to
the cases where p + p’ = 1; these cases are obviously not realizable in practice.

From Table 3 we note for example that for p = 0.1, the single favourable bet at p = 0.4
yields z1 = 0.8932, and with an additional fair bet at p” = 0.5 (the case u = 0) yields
z1 = 0.7510. However, if the additional bet is an unfavourable bet with p” = 0.5 and
u = 0.05, we have z; = 0.8410, so that with b = 20, the values of P(R) for the three cases
above are 0.1045, 0.0033, and 0.0313 respectively.

Table 3 z; values for values of p, p’, |1, u for additional fair and unfavourable bets.

p=0.1

i = 0l (z1 = 0.9807)

p=02 (5 = 09662)

, P 01 02 03 04 05 01 02 03 04 05
0 9805 .9802 .9799 .9793 .9785 9658 9653 .9647 9638 .9626
0.01 9806 .9804 .9803 .9802 .9802 9658 .9655 .9651 .9647 .9643
0.05 9807 .9808 * o 9660 .9660**  *

p=02

L= 01 (z1 = 0.9575) L= 02 (z1 = 0.9265)
L P 1 2 3 4 5 1 2 3 04 05
0 9565 .9550 .9530 .9500 .9451 9248 9225 9193 9146 .9071
0.01 9565 .9554 .9541 .9524 .9500 9249 9229 9203 .9168 .9115
0.05 9569 9568 9571 * * 9252 .9242 9237 .9236 .9240

p=03

p=01 (= 0.9291)

U= 02 (z1 - 0.8795)
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STATISTICAL ANALYSIS OF HORSE RACING DATA

Kuldeep Kumar!, S. Ganesalingam? and Siva Ganesh?

Abstract

The principles of statistics can be applied to almost every sphere of modern life;
sports are no exception. It is hypothesized in horse racing that the odds of winning
the horse is reflected in the volume of bets placed up to the start of the race. We
have tested this hypothesis in this paper. We also looked at the effect of various
variables such as the weight carried by the horse, the time taken and the barrier
effects on the finishing position of the horse. It appears that the betting remains
almost constant for winning horses while the loosing horses exhibit an increasing
trend.

1. INTRODUCTION

Horse racing is one of the oldest of all sports and is mentioned in the Olympic
Games of Greece over the period 700 — 40 BC. Charles II (reigned 1660 — 85) became
known as “the father of English turf” and inaugurated the King’s Plates, races for
which prizes were awarded. His articles for these races were the earliest national
rules. The horses raced were six year old and carried 168 pounds, and the winner
was the first to win two 4 - mile heats. Similar references are found in North America
and France around the 16th and 17th centuries. The beginning of the modern era of
racing is generally considered to have been the inauguration of the English Classical
races; the St. Leger in 1776, the Oaks in 1779, and the Derby in 1780. (The other
historical details about horse racing can be found in Encyclopedia Britannica Vol. 6
Micropaedia.)

The winning odds of a horse are offered by bookmakers. In horse racing the odds
reflect the volume of bets placed on each horse. These vary with time, as bets are
placed, up to the start of the race. According to Dixon [3] betting markets exist for
many sports and give a novel motivation for development of statistical models for
sporting events. The use of scientific improvement of the model, with the purely
incidental by-product of winning money from the bookmakers, should encourage
statisticians to consider more complex models for sporting events. Predicting the
winning horse has always been a million dollar question not only for the gambler or
common man but also for the statistician. Yitsak and McCartney [7] developed the
prediction model in horse racing and White and Dattero [6] used vector forecasts to
predict horse racing outcomes.

1School of Information Techology, Bond University, Gold Coast Qld 4229

2Department of Statistics, Massey University, Palmerston North, New Zealand
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In this paper we have used the data collected from horse races on the Gold Coast,
Australia. The data consists of amount of mony bet on each horse at 12 occasions up
to the start of the race and the placing of the horse in the race. The hypothesis we
wish to test here is whether the placing of the horse is dependent on the betting
money placed on that horse. In other words if the money bet on the horse (over the
time slice from 1 to 12), increases for each time interval, the chance of the horse
winning the race will be higher than if the money bet remains constant for each time
interval.

In Section 3 we have described the methodology and in Section 4 we have analysed
the data. Results and conclusions are also give in Section 4.

2. DESCRIPTION OF THE DATA

Data has been collected from various races at the Gold Coast, Australia in 1995. The
data consists of race numbers, placing of the horse, the original money in $ bet on
each horse along with other variables observed on each horse such as; finishing
position, time taken to complete the race, weight, age, amount of money won, barrier
position and starting price.

3. METHODOLOGY: REGRESSION AND REPEATED MEASURES ANALYSIS

Let us introduce briefly the statistical techniques we employed in this study. The
logistic procedure fits linear logistic regression models for binary or ordinary
response data by the method of maximum likelihood.

Binary response variables, for example, success, failure, as well as ordinal response
variables for example in a horse race “first place, second place and third place”, or in
a medical context “none, mild, severe” arise in many fields of study. Logistic
regression analysis is often used to investigate the relationship between the response
probability and explanatory variables. A thorough discussion of binary response
model methodology is given in Cox and Snell [2]. Several texts that discuss logistic
regression are Agresti [1], Freeman [4] and Hosmer and Lemeshaw [5].

For the Binary response type model we let the response y of an experimental unit or
an individual take on one of the two possible values, denoted for convenience by 1
and 0, for example y = 1 if a horse wins otherwise y = 0. Suppose X is a vector of
explanatory variables and p = Pr[y = 1 given X] is the response probability to be
modelled. The linear logistic model has the form:

logit(p) = log(p/(l - p)) =o+p'X

where o is the intercept parameter and f is the vector of slope parameters and P’ is
tis transpose.

The logistic model shares a common feature with a more general class of linear
models where a function g = g() of the mean response variable is assumed to be

linearly related to the explanatory variables. Since the mean p implicitly depends on
the stochastic behaviour of the response, and the explanatory variables are assumed
fixed, the function g provides the link between the random component and the
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deterministic component of the response variable. For this reason, Nelder and
Wedderburn (1972) refer to g() as a link function.

In our study, this logistic regression approach was first considered in the context of
the horse race data and the findings are not encouraging but these are highlighted in
Section 4.

Further in order to see how the pattern of betting has changed from the original
position to slice 12, we have fitted the time series regression model:

ye=Bo +Pit+¢

where, t=0 (origin), 1,2,......,12
yt = betting money at time t
€ denotes the random error.

If B, is positive it will imply that over the period of time the betting money has gone
up and it will also tell the amount. If betting is constant B; will be zero. and if betting

on the particular horse has gone down the value of $; will be negative. Hence [3; will
be a good indicator of the change in betting pattern. If the hypothesis that the batting

for the winning horse goes up over the period of time, then ; should be correlated
with the placing of the horse.

Repeated measures analysis on the other hand deals with analysing data consisting

of a number of relatively short non-stationary time series in which the trends, u(t),
say, are of direct interest. This situation arises in experiments which involve
comparisons amongst trends associated with different treatments. It also applies to
growth studies. We refer to data of this kind as repeated measurement data. The
horse race data where the bets are placed on a horse at different points of time, is a
typical example of a repeated measurement data.

We shall make the pragmatic assumption that the nature of the random variation is

the same in all the individual series. Formally, we assume that the i™ series is
generated by a random process {y;(t)} such that:

yi(t) = wi(t) + z; ()

where {z;(t)} is a stationary random process, with the same structure for all series but
realised independently for each.

4. RESULTS AND CONCLUSIONS

Repeated measures analysis of variance results are given in Table 1 and the
corresponding plots of interaction means are given in Fig 1.1 and 1.2. It can be seen
from Table 1 that overall there are no noticeable differences between the “races” and
between the “winners” and the “losers”. However, the evidence for the latter
conclusion is marginal (p-value = 0.1071). When we look at Table 1 again, the
univariate tests of hypothesis for within subjects effects indicate that there are
noticeable differences between “bets” at different times before the race



230 K. Kumar, S. Ganesalingam and S. Ganesh

(p-value =0.0001). Further the interaction between the “bets” and “races” is significant
(p-value = 0.0272).

Table1: Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF SS MS F p-value
RACE NO 2 17249.18 8624.59 0.77 0.4705
WIN 1 30546.96 30546.96 2.72 0.1071
Error 38 426121.03 11213.71

Tests of Hypotheses for Within Subject Effects

Source DF SS MS F p-value
BETS 12 495.39 41.28 3.95 0.0001
BETS*RACE NO 24 415.21 17.30 1.66 0.0272
BETS*WIN 12 326.64 27.22 2.61 0.0023
Error (BETS) 456 4763.11 10.44

It is interesting further to see in Table 1, that the interaction between “winning” and
“betting” is highly significant (p = 0.0023). This is evident in Fig 1.1 and Fig 1.2 in
that the mean betting is almost constant for the winning horses while the loosing
ones exhibit an increasing trend of betting.

Further analysis carried out with the data corresponding to race 1, shows that our
expectation is not clearly supported. No definite trend in betting was observed over
the 13 time periods starting from the origin to slice 12, the last betting time just
before the race. However a constant nature of betting is noted with the winning
horses.

Plot of BETTING*TIME. Symbol is value of WIN.
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Figure 1.1: Means of “betting” ( 1-winners, 0-losers)
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Plot of BETTING*TIME. Symbol is value of RACE_NO.
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Figure 1.2: (1- horse finishes 1st; 2- horse finishes 2nd; 3- horse ﬁnisﬁes 3rd)

A multiple regression analysis was also carried out on the data. It was noted that the
‘finish position” of a horse is predictable. The corresponding regression equation is
given as:

Finish Position = 5.31 - 0.0056*weight + 0.722#margin - 0.126 *horse age +
0.0562+barrier + 0.0165*start price.

It appears that most of these coefficients are significantly different from zero at the
10% level. However the variable “margin” appears to be the best predictor of the
finish position. To be more precise we need more data on each horse in the past races
so that the current performance of each horse can be correctly predicted. The best
next predictor is the starting price. The above prediction equation explains almost
70% of the total variation and hence can be used for future prediction of the finish
position of a horse taking part in race. The logistic approach proves to be

inappropriate as the data set 1 is highly correlated and prompted us with the
repeated measure approach.

However, these results may not be valid for other races. It will be interesting to
analyse many more races before any definite conclusions can be drawn.
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INFORMATION-THEORETIC FOOTBALL TIPPING

David L. Dowe!, Graham E. Farrl, A. John Hurst! and Kevin L. Lentin?

Abstract

This paper describes a football tipping competition based on the estimation of
probabilities of victory (rather than simply an estimation of which team will win),
and its connection with information theory and gambling. It also describes a
football tipping competition for which entrants tip the mean and standard
deviation they perceive on the margin of the game. The optimal long-term
strategy in both competitions is the minimisation of the expected Kullback-Leibler
distance from the "true" probability (distribution) to that tipped by the entrant.

1. A PROBABILISTIC TIPPING COMPETITION

"The Master said, Yu, shall I teach you what knowledge is?
When you know a thing, to recognise that you know it, and
when you do not know a thing, to recognise that you do not
know it. That is knowledge."

— Analects of Confucius (transl. by Arthur Waley), Book II,
No. 17.

It is a shortcoming of many statistical, "machine learning" and human predictive
methods that, while they might offer predictions, they are not always willing to
associate a probability or degree of certainty with the prediction.

This paper reports on an attempt to improve this situation in a familiar predictive
activity: football tipping . This domain provides an excellent setting in which to test
and illustrate ideas from statistics, inductive inference and information theory, while
at the same time being well known to many people outside these fields.

Football tipping competitions, in which participants try to predict, week by week,
which team will win each game of football played in some league, have been popular
in Australian workplaces for a long time. Some such competitions require that
participants predict further information such as winning margins, and have various
ad hoc rules for rewarding accuracy of predictions. Our own Department's tipping
competition has traditionally been of this type. Certainly predicting a team's
winning margin does say something about how sure you are that the team will win,
but it would be good to have your degree of certainty described more directly, and to
have the accuracy of your prediction rewarded in a mathematically sound way.

1Department of Computer Science, Monash University, Clayton Victoria 3168
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With these remarks in mind and in an attempt to add interest to our departmental
tipping competition, a new competition was started (as noted in earlier work [4, 6, 7],
this competition began with the Round 3 matches of the 1995 Australian Football
League (AFL) season, which began with the match on Saturday 15 April 1995) in our
Department in which participants must estimate, for each game, not just the winning
team, but its probability of winning (Determining probabilties is also of interest to
both the gambler and the bookmaker. See also §5 where we discuss combining tips
for a "weighted" prediction.). The first suggestion to have a probabilistic competition
came from Jon Oliver (as pointed out in [6]). Below we describe how a probabilistic
tipping competition works. As we shall see, it is closely related to the application of
information theory to certain gambling situations, and finds parallels in other fields
where quantifying the information cost of a prediction is important.

For such a competition to be meaningful, predictions must be properly rewarded.
The rewards must be such as to encourage people to nominate their actual estimates
of the winning probabilities. The traditional scoring method of one point for a
correct prediction, zero otherwise, will not work.

The reward function we use is as follows. If a tipster assigns probability p to a win
by team A, then the score for the tipster on that game is

1+log,p, if A wins;

1
1+log,(1-p), if A loses. @

This score is measured in bits. If the true probability Pr(A wins) = x, then a tipster's
expected score is 1+ wlog, p +(1— m)log,(1- p), which is maximised by the estimate

p =7 (elementary calculus, or appeal to the Information Inequality [1, Theorem
2.6.3)).

The use of such logarithmic functions to reward predictions goes back at least to J.
Kelly [10] and (we believe) to I. Good and P. Dawid. Recent applications which
might be of interest include [15, p. 20] and [5, p. 3].

The maximum expected score which a tipster can achieve is therefore
1+H(rm,1-nm), ()

where H is entropy. The tipster of course does not know this as he does not know 7.
The tipster believes that his expected score is

1+H(p,1-p) . 3)

The score obtained from (1), for a single game, is accumulated over all the games in a
season to give a player's total score.

Some elementary observations may be helpful at this point. Consider a single game,
and let X be the team that actually wins the game. The score given by (1) is positive
if the tipster predicted that Pr(X wins) > 1/2 (i.e., if the tipster predicted the
winning team correctly), negative if the tipster predicted Pr(X wins) <1/2, and 0 if
the tipster thought each team had an equal chance (or was simply expressing
complete prior ignorance by nominating probabilities of 1/2 each). The maximum
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possible score from a game is 1 bit, when the tipster predicts a winner with certainty
and is correct. However being too certain can be dangerous. A tipster who predicts
a winning probability of 1, and is wrong, gets a score of -e= and essentially becomes
incapable of ever winning the competition.

Note that the constant 1 in (1) is not necessary for comparing tipsters, but is included
for a few reasons. Firstly, the sign of the expression then indicates whether the
tipster got the winning team right or not, and 0 points corresponds to complete
ignorance (or maximum uncertainty) as described above. Secondly, having no
constant at all would keep everyone's score negative throughout the competition,
which seemed likely to put people off.

In most football codes, a draw is also a possible outcome. In Australian Rules
football, a game is a draw if the two teams finish with identical scores. (There is no
possibility of draws due to bad weather, as in cricket.) About 1.1% of Australian
Rules football games end in draws (which makes them much rarer than in other
codes), and there is little interest for tipsters in predicting draw probabilities
separately for each game. It is therefore desirable to stick to the usual two outcomes
(win/loss), and augment the reward function to take account of draws. If for
example Alice tips Pr(X wins) = 0.9 and Bob tips Pr(X wins) = 0.6, and the outcome
is a draw, then clearly Bob was nearer the mark and, we argue, should be rewarded
accordingly (as opposed, for example, to just ignoring draws and giving everyone
the same score for them). We suggest that there is enough randomness in football to
regard a draw as a game which could have gone either way, equiprobably. This
suggests that a tipster who nominates Pr(X wins) = p should, in the event of a
draw, be given

1+(1/2)log,p+(1/2)log,(1—p) bits. 4)

The basic ideas of probabilistic tipping are easily extended to cope with more than
two outcomes of interest. Tipsters are required to nominate probabilities for each
outcome, and their reward is the log, of the probability which they assigned to the
actual outcome plus log, of the number of possible outcomes (assuming that prior
ignorance is best modelled by the assignment of equal probabilities to all outcomes).

We remarked earlier that a tipster expects to gain (sweeping under the carpet and
disregarding the possibility of draws)

1+p;log, p; +(1-p;)log,(1-p;) (5)

bits from a game i in which he nominated a probability of p; for one of the teams
(say, the home team). A tipster may do worse than he expects, in which case we
might say that his predictions were bolder, or more positive , than they should have
been. On the other hand, he may do better than he expects, in which case his
predictions were more cautious, or negative . Either way, he will on average fall short
of the maximum expected score. The tipster's score, alone, will not reveal whether
this shortfall is due to his being consistently too positive, or too negative, or neither.
(If neither, then his positive errors cancel out his negative errors, on average, and he
does about as well as he expected, although still less than the maximum expected
score. The only way to attain the maximum expected score in the long run is to
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always predict the probabilities correctly, i.e. to never make a positive or negative
error.)

It is easy, however, to work out whether a tipster is being consistently positive or
negative in their tips. Let the actual result of game i, for the team for which the
tipped probability was p; , be r; , where r; = 1, 0, 1/2 for a win, loss, draw
respectively. Then the actual score gained from game i is

1+r;log, p; +(1-7;)log,(1-p;)

bits. In order to measure the positivity of the tipster, we take the difference between
the score they expected and the score they obtained, for each game, and sum over all
the games (denoting the result by pos(p) to indicate dependence on the probability
estimates p; ):

pos(p) = X (pi —1;)loga(p; / (1-p1)) - (6)

1

Positive indicates too bold, negative indicates too cautious, and zero indicates that
neither positive nor negative tendencies predominate, and that the tipster may be
regarded as a good judge of their own predictive ability. For example, a tipster who
was completely ignorant of football and aware of that fact would assign probabilities
of 1/2 to all teams, would score poorly (in fact, zero), but would be given a positivity
measure of zero which would indicate the fact that they did precisely as well as they
expected.

It is hoped to implement this positivity measure in future competitions, to give
participants some automatic feedback on their own judgment (related to this, Kevin
Korb has suggested the possibility of calibrating the tipsters.) Certainly it lends itself
to easy calculation on a week-by-week basis.

2. GAUSSIAN TIPPING

The probabilistic tipping competition described above can be thought of as a
minimum expected Kullback-Leibler distance competition. If the true probability of
(e.g.) Geelong defeating St. Kilda is 7, then the Kullback-Leibler distance (see, e.g.,

[1, p. 18]) from the true distribution (7,1- 7) to the estimated distribution (p,1-p) is

(mlog, m+(1- m)log,(1- 7)) —(7log, p + (1- m)log,(1-p)) - @

In effect, we wish to put the appropriate probability on both outcomes. (See §4, on
fully-invested gambling.)

For the Gaussian competition (which began [7, 4] with the Round 1 games of 1996,
commencing on Friday 29 March 1996) rather than reward the tipster by a constant
plus the logarithm of the probability they assigned to the correct outcome, we now
reward the tipster with a constant plus the logarithm of the probability they assigned
to the margin of the game.
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The tipster predicts a Gaussian (or Normal) distribution for the margin of the game,

specifiying this with a predicted mean, i and a predicted standard deviation, &.
The tipster's score for such a prediction is

x+1/2 U
J‘ e~ (/2)(x-)/6)" 4 6)

x-1/2

10 +

1
oN2r1

Once again, we have a constant, the motivation for which is that a tipster expressing
prior ignorance, by nominating a distribution of maximum entropy, should get a
score of 0. While it is possible in principle for a tipster to nominate arbitrarily large

6, we take the view that anyone who is in this competition at all brings with them
(or will soon acquire) at least some vague idea of the approximate sizes of margins
that occur in practice. (The greatest winning margin in a typical year, consisting of
about 180 games, seems to be around 130 to 140 points, and a margin of over 200
points is (we believe) unknown in the 100-year history of the competition.) We do
not attempt to quantify this level of ignorance exactly, and the exact value of the
constant is not critical. It seems to us, from experience, that a value of 9 is about
right, while 10 is a little generous (but is readily accepted as it makes scores larger).
Someone who does not submit tips for a game is still given 0 bits for it.

This competition, like the simpler one described in §1, is about minimising a
Kullback-Leibler distance, and both are relevant to problems of scientific prediction,
gambling and combining opinions of different "experts" (of which more below, in

§§4,5).

3. EXPERIENCE WITH THE COMPETITION

The probabilistic tipping competition was run for the first time [6] in 1995, and is
being run again with many more participants this year.

The introduction of the tipping competition had a number of interesting effects on
participants. Some found that it actually revived an interest in football that had
begun to wane. In the early days of the competition, a number of participants
tended to be too bold in their tips, with probabilities too close to 1, so that a couple of
"upset" results led to major setbacks. Perhaps football followers generally are too
sure of their predicitions, and do not realise the full extent of the uncertainty
associated with results of games. Another amusing observation in the first few
weeks was the poor performance of computer scientists specialising in information
theory, compared with some of the general staff with no knowledge of that field [7].
As the season progressed, tipsters began to be a little more restrained in their
estimates. However, very near the end, some participants, needing large scores to
catch up, began to get reckless and nominate probabilities very close to, and in a few
cases equal to, 1. This strategy resulted in some spectacular (and sometimes infinite)
slides.

Some participants tried to improve their performance by seeking help outside their
own intuition. Considerable secrecy usually attended these efforts. Kevin Korb
(and, later, at least one other) experimented with variants of the Elo rating scheme
used by chess players (see, e.g., [8; 9, pp.183-205; 11, §9.1]). Others looked up the
odds for each game given in the newspaper every Friday, and used corresponding
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probabilities. Experience so far suggests that an Elo-type scheme performs well
(indeed better than most tipsters), but that using published odds does much better.
In fact the participants who used the odds have consistently led our competitions by
significant margins.

To be fair to the Elo-type schemes, however, they used very little information: just
outcomes of games this season, some rough estimate of the initial standings of the
teams at the start of the season (which is not a critical factor), and a simple means of
taking some account of home ground advantage. No information about players,
injuries, weather and so on was used. The success of such methods, when pitted
against knowledgeable football supporters, is thought-provoking. Presumably it
would be possible to do better with more sophisticated rating schemes. We suggest
that such methods might also applied in other sports, such as cricket.

The Gaussian competition was, not surprisingly, more difficult for people to grasp.
By Round 4 (1996), the designer (Dowe), the programmer (Hurst) and most of the
participants (or those that hadn't dropped out) almost seemed to have the hang of it.
While predicting the margins is natural and interesting enough, giving an estimate &
of the standard deviation seemed to many of us to be just a matter of finding out,
through experience, what was the right sort of figure to use (very roughly, about 40),
and then applying that figure to each game, with only minor variations.

4. CONNECTION WITH G AMBLING THEORY

Suppose a gambler places bets on football games with a bookmaker. The gambler
starts with an amount of money Sj , and we assume that she is fully invested, i.e.,
bets all her money on each game. The gambler must simply decide how to apportion
her funds between the two possible outcomes of each game. Supose that team A is
to play team B, and that the true probabilities of winning are 7, = Pr(A wins) and
g = 1-m4 =Pr(B wins). The bookmaker offers odds of z4-to-1 against A winning
and zp-to-1 against B winning. Let p, and pg =1-p,4 be the proportions of her

wealth which the gambler bets on A and B respectively. We regard the game as a
random experiment.

Consider what happens in the long run. Suppose the game A versus B is repeated n
times, and let X; € {A,B} denote the winner of the j -th game (so that X;,X;,..., X,

are independent identically distributed random variables). Let r4 and rg be the
proportions of these games won by each of the two teams.

Suppose the gambler's wealth prior to the j -th game is S. She loses the bet placed on
the loser, but the amount Px, -S placed on the winner earns a payment of (sz +1)

times that amount from the bookmaker. The gambler's wealth after the game is
(sz + 1)pXj -5, and has grown by a factor of (zX], + 1)pXj .

Over the whole sequence of games, the gambler's wealth increases by a factor of

ﬁ(zx +1px,

j=1



Information-Theoretic Football Tipping 239

which is easily shown to be equal to
o(raloga(pa(za+1))+rplog, (pp(zp+1))

As observed in [1, Theorem 6.1.1], this converges in probability as # — o to
on(7410g2(pa(za+1)+75loga (pp(zp+1)))

It is straightforward to prove, once again using the Information Inequality, that this
is maximum when p4 =74 and pp = g , that is, when the proportions which the
gambler bets on each team equal the true probabilities of winning [1, Theorem 6.1.2].
The gambler's task is then to come up with the best possible estimates of the true

probabilies. It is interesting to note that this aim takes no account of the odds offered
by the bookmaker.

The fully invested football gambler is thus in exactly the same position as the
probabilistic football tipster. Proportions of wealth gambled correspond to winning
probabilities tipped. An increase in the logarithm (base 2) of the gambler's wealth,
following bets on some game, corresponds to the tipster's score for that game. (They
are not exactly equal, but differ only by a constant which depends only on the odds.
This constant is thus the same for all gamblers/tipsters, and thus has no bearing on
comparing their performance.) In each case, the best strategy is to estimate the true
probability as closely as possible. (In gambling, the strategy of apportioning one's
wealth into bets so that the proportions are estimates of the true probabilities is
known as proportional gambling.)

Our information-theoretic football tipping competition is thus a simulation (since
real money was not used) of fully invested gambling.

The information-theoretic approach to this and other gambling situations was
pioneered by Kelly [10] and is discussed in [1, Chapter 6].

5. COMBINING TIPSTERS TO MAKE A BETTER TIPSTER

Minimum Message Length (MML) and related inductive inference work indicate that
predictions are best made by combining theories, roughly in proportion to their
posterior probability [12-14]. Results of Solomonoff [12] indicate that whether one
wishes to maximise expected predictive accuracy or minimise expected Kullback-
Leibler distance, one can do no better than to weight and combine all relevant
theories. We note in passing the MML theory comes relatively close to minimising
the expected Kullback-Leibler distance [3].

This result of weighting and combining theories applies not only to general scientific
prediction problems in inductive and statistical inference. We also observed it to be
the case in the 1995 football season [6], where we endeavoured to combine the
opinions of different "experts".

Two of many possible ways of combining our "expert" tips are (i) to average them
and (ii) to somehow weight them, where the better tippers are given larger weights
than the less successful tippers. The "Average" tipper and a "Weighted" tipper were
both entered in the 1995 information-theoretic competition. The weightings used in
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the "Weighted" tipper were based on our interpretation of Solomonoff's early ideas
[12], where we gave each tipper a relative weighting of 2 raised to the power of their
current bit score.

The "Average" tipper performed very well in 1995, leading 11 human tippers and
trailing only 3 human tippers after Round 21. The "Weighted" tipper was a clear
winner in 1995, but it is not yet clear whether or not this was because it was
inadvertently given a slight but nonetheless unfair advantage. It is desired that we
have the "Average" and (correct) "Weighted" tippers retrospectively for the 1996
information-theoretic competition, or at least for the 1997 season. The mathematics
has also been done to put "Average" and "Weighted" tippers in the Gaussian
competition in the following way: we would weight the various tippers as described
above, and then fit them with the Gaussian distribution of minimum Kullback-
Leibler distance. More complicated methods of combining predictors are not
discussed here.

6. CONCLUSIONS AND FUTURE WORK

Information-theoretic football tipping, such as discussed in this paper, is interesting
in several respects. Although based on technical ideas, it is readily understood and
enjoyed by non-technical people. We are not aware of another football tipping
competition like it, although it is very closely related to fully invested gambling (and
other predictive activities). The success of tipping strategies based on bookmakers'
odds is another illustration of how hard it is for the gambler to make a buck. The use
of strategies based on rating systems merits further investigation. In teaching,
information-theoretic football tipping can be used to demonstrate principles from
probability and information theory.

The "old", 1995, WWW site was
http://www.cs.monash.edu.au/~kevinl/footy.html

and the new (1996) WWW site is at
http://www.cs.monash.edu.au/~ajh/footy/results/.
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THE CAR JUMP

Neville de Mestre! and Maurice N Brearley2

Abstract

This paper looks at the dynamical feasibility of performing a car long jump greater
than 100 metres using a straight flat approach of 400 metres and a suitably inclined
ramp for the take-off. Two possibilities for the impact zone are considered.

1. INTRODUCTION
An investigation will be made of the feasibility of performing a long jump of about

100 metres by car using a straight flat 400 metre approach strip, an inclined ramp for
take-off and a bed of sand for landing on (see Figure 1).

—_— — —

Figure 1

The motivation for the investigation arose through an approach by Stuart “Fireball”
Campbell to one of us (Neville de Mestre) to make calculations for the design of a
suitable ramp to enable him to break the world long jump record for a car; at present
96.4 metres. The event was to be staged at Cable Ski World on the Gold Coast during
Easter 1995 with the added stimulus of being performed through a “hoop of fire” at
the top of the ramp. The rights to televise the attempt were to be marketed.

Earlier long jumps with the proposed car had been performed in Sydney using a dirt
ramp and on the Gold Coast using a ramp manufactured at Movieworld. Both jumps
covered distances much shorter than 100 metres and were used as preliminary trials
for the main attempt. Campbell was adamant that there would be no trials with the
new ramp; it was to be a one-off attempt.

1School of Information Technology, Bond University, Gold Coast Qld 4229

285 Dandarriga Drive, Clifton Springs Vic 3222
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Various reasonable assumptions were made. It will be shown that air resistance can
be neglected in the main; its effect on the length of the jump will be shown in
Appendix A to be small. In the absence of any details of the mass distribution of the
car, assumptions will be made to enable its dynamical characteristics to be
calculated.

2. THE CAR

The vehicle to be used was a 1972 Ford Falcon (Model XY) with all the seats, except
the driver’s removed. The driver’s seat was centre mounted in a safety cage to
maintain symmetrical left and right weight distribution, and was placed halfway
towards the back of the cabin to reduce the likelihood of injury from dashboard
collapse. Only two gallons of petrol were to be in the car at the beginning of the
approach run to improve safety considerations. The estimated maximum speed of
the car on the flat approach is 176 kilometres per hour (110 miles per hour).

With all its modifications the total mass (M) of the car and driver was 1842
kilograms.

It is necessary for dynamical calculations to know the position of the centre of mass
of the car, and also its moment of inertia about the rear axle.

The distance (d) from the rear to the front wheels is 2.8 metres, also known as the
wheelbase.

Figure 2: Rear wheels (R) and front wheels (F) of car

No details are available on how the mass of the car is distributed but the presence of
the engine and gear box ensures that it will be heavier towards the front. The mass
will be assumed to increase linearly along the line RF, and the centre of mass G will

be taken to lie on RF. Suppose A denotes the mass per unit length along RF, then
A =Kx,

where x is the distance from R along RF and K is a constant. Then

d
M= ij dx = %Kd2 and so K = 2M/d2. By taking moments of mass about R,
0

d d
M(RG) = [Ax dx = [Kx* dx =Kd*/3

which yields RG = 2d /3 as the position of the centre of mass of the car.
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The moment of inertia I of the car about its rear axle is given by

d d
I = [Ax® dx = [Kx® dx =Kd*/4 = %Mdz ~7220(kg m?)

3. THE TAKE-OFF RAMP

The Movieworld Ramp is 7.2 metres long with a wooden surface and its height at the
take-off point is 1.8 metres. To give the car springs time to settle down after the
change of slope encountered on entering the ramp it would be helpful to have a
longer ramp. This has two disadvantages: car speed would be lost during progress
up a long ramp, and the height of the take-off point would be greater, adding to the
height attained by the car during its flight and thus increasing the hazard of the
landing.

It is therefore recommended that the present ramp design be used, but with the
central supporting columns lengthened slightly to eliminate the change of slope that
occurs in the middle of the ramp. If this is done, the angle of inclination of the ramp
will be (see Figure 3)

a = sin‘l(H1 —Hz)/L

where  Hj = height of take-off point in metres = 1.8
H; = height of start of ramp in metres = 0.3
L = length of ramp in metres = 7.2

Then o = 12°.

Figure 3: Side elevation of take-off ramp

To permit the springs of the car to adjust gently to the change in slope from 0° to 12°,
a region of packed earth will be constructed at the beginning of the ramp. The top
profile of this packed earth will be a parabola

y = Ax?
Therefore

—(b—’- =2Ax
dx
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For continuity of slope at the beginning of the ramp

2Ax = tan (12°)

Also

Ax2=03
Hence elimination of A yields

x_ 03

2 tanl2?’

x=2.82
and so

A =0.0377

Thus the packed-earth entry to the ramp should begin 2.82 metres from the ramp
and have a parabolic profile given by y = 0.0377x2.

4. VELOCITY AT THE TOP OF THE RAMP

It will be assumed that the car achieves its top speed on reaching the beginning of

the packed earth entry to the ramp. Its speed on reaching the top of the ramp will
now be calculated.

Suppose that V((=48.9) denotes the top speed of the car in ms-1, V1 denotes the speed
of the car as its back wheels leave the ramp, P is the maximum power generated by
the engine and M is the mass of the car and driver (1842 kilograms).

Nj
A
2
kv é—{—’ F,
« —(O—
>N S V7 S
1Ny V
Mg

Figure 4: Force diagrams for the flat and the ramp

On the flat at top speed, the Principle of Linear Momentum for the car yields (see
Figure 4)

F,—uN,-kVi=0
N, -Mg=0
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Hence
F=p,Mg+ kV;

where F; is the force exerted by the engine at full power on the flat, py is the
coefficient of friction between the tyres and the ground (0.05 for a dirt road,
Radovanovic [1]) and k is the air resistance coefficient. Now it is well known from
fluid mechanics that

1
k=_pSC,

where p denotes the density of air (1.22 kg m™), S denotes the cross sectional area
(z 2m2) and C, denotes the drag coefficient (0.5 for a Ford Falcon, Radovanovic
[1]). Thus k =0.61.

When the car is travelling up the ramp the Principle of Linear Momentum yields (see
Figure 4)

F, —,N, - Mg sin(12°) - kv* = M%

N, -Mg cos(12°) =0

where F; is the force exerted by the engine at speed v under maximum power, and p,

denotes the coefficient of friction on the ramp (un = 0.015 for a wooden surface,
Radovanovic [1]) But

P=F,v=EF)V,
and so

Md_V — Flvo
dt

—,Mg cos(12°) - Mg sin(12°) - kv?

Thus

d Vv i f1me k(Vy-v®
d—:=g(%—uz cos(12 )—sm(lZ ))+M[ OVV j

Since k/M = 3.3 x 10~ and v will be close to Vj at the top end of the ramp, the last
term is neglected and

d \ O\ (17
?d—tci = g(—&;——o -U, cos(12 ) - sm(12 ))

23.99
v

-2.18

Thus
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Vﬂ\l _23.99-2.18
ds v
where s is the distance up the ramp. This differential equation with v =V, when s=0
has the solution

s=-0.23v? —5.05v —121.10 In(2.18v —23.99) +1331.48

When the car reaches the top of the ramp s = 1.8 cosec (12°) = 8.66 and v = V1. Hence

8.66 = 1331.48 — 0.23 V2 —5.05V; — 121.10 In(2.18V; —23.99)

which has the solution V,=48.6. The neglected term k(V;—v*)/(Mv)=0.013
which is small compared with the terms kept. Thus the speed of the car at the top of
the ramp is 48.6ms™'(= 175km / hr).

But the speed at the top of the ramp is only one aspect of the car’s velocity. It would
also be useful to know the angle of elevation of the car immediately it leaves the
ramp.

Two factors may cause this to be different from the 12° slope of the ramp. Firstly, the
springs of the car may be in either a compression or expansion phase at the top of the
ramp. Various combinations of compression and expansion for the rear and front
springs could either increase the angle of elevation of the car or reduce it. Secondly,
when the front wheels leave the ramp, the weight of the car will start to rotate the car
towards the ground and so by the time the rear wheels have cleared the ramp the
direction of travel of the car will be less than 12° to the vertical. It will be shown later
that this amounts to a difference of only 0.43°.

Without being able to measure the spring effects, let the assumption be made that the
two effects cancel out and the car takes off with an angle of elevation 12°.

5. THE DISTANCE TRAVELLED IN THE J UMP

In calculating the horizontal distance travelled, it is adequate to treat the car as a
particle (that is, a point mass). In a later section when the attitude of the car is
investigated it will be necessary to regard it as a body of finite size.

YA
Vi
/ >3
e L o O e A S SV G S & S iV SN AV AN AN S E A

< R >
Figure 5: Path of the car through the air

With axes Oxy as shown in Figure 5, the equations governing the flight of the car are:
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x=0, y=-g,

x=V,cosa, y=V;sino-gt,

x =V, tcosa y=V1tsina—%gt2,
where t is the time after leaving the top of the ramp and a dot above a symbol
denotes differentiation with respect to t. Detailed calculations show that the effect of

air resistance is small enough for it to be ignored in this part of the analysis also (see
Appendix A).

The total time of flight of the car, t; say, is given by

-H, =V t;sino - %gtl2

where it is assumed that the car will reach the ground in a sandpit at ground level, or
in some catching device (see Appendix B).

Thus

. _Visina+ |/ V2sin? o+ 2gH,
=
g

is the only positive solution, and with H; = 1.8, V; = 48.6, o = 12° gives t; = 2.25
(seconds)

The horizontal distance travelled in metres from the top of the ramp is

R, =V t, cosa
=105.8 (metres)

This is slightly above the objective of 100 metres which is desirable as it allows for
possible failure to attain the predicted speed or angle of elevation at the top of the
ramp.

It is also not clear what the rules for measurement of a car long jump are. Clearly the
measurement will start from the vertical line through the top of the ramp. The centre

of mass of the car will be ahead of this top end of the ramp, adding about % of the
wheelbase (= 1.8m) to the jump.

On the other hand the measuring point at the far end of the jump is probably where
the car first strikes the ground. If the rear of the car flips over the front, there is no
measuring problem (but the driver may have other problems). As it is shown in a
later section, it is most unlikely that the car would fall back into the sandpit as
human long-jumpers sometimes do, because the car will be travelling at much too
high a speed for this possibility to occur. Therefore another quarter of a wheelbase
(= 0.7m) can be added to the jump distance because of the position of the centre of
mass of the car at landing and the angle of striking (see the next section).
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To find the height reached during the jump the condition ¢ =0 is used to show that
the time t; to the highest point is

t,=(V,/g)sina
The maximum height above the take-off point 0 is thus
h= 1(V2 / g)sin’
2 1
=5.2

Therefore the maximum height of the car during its flight above the ground is
h + H; =5.2 + 1.8 =7.0 metres. This is quite a drop!

6. ROTATION OF THE CAR DURING FLIGHT AND LANDING

When the front wheels of the car leave the top of the ramp, the car begins to rotate
about the rear wheels under the influence of the moment exerted by its weight.

G

Mg

Figure 6: Front wheels clear of ramp

Let 8 denote the angle of rotation of RG in the time t since the front wheels left the
ramp.

The Principle of Angular Momentum about A yields
1.8 = Mg(RG)cos(o. - 6)

If it is assumed that 6 can be neglected compared with a during the whole time that
the rear wheels remain on the ramp, then substitution for Igr and RG produces

0 =(4g cosa)/3d = 4.57 (rad/s’)
Thus
0=4.57 t (rad/s)
and

0 =2.285 t* (rad)
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The time between the front and the rear wheels leaving the ramp is (to a very close
approximation)

t=d/V,=2.8/48.6=0.0576(s)

So when the rear wheels leave the ramp,

0, = 4.57x0.0576 = 0.263(rad / s)
0, =7.58x107(rad) = 0.43°

This small calculated value 6; substantiates the earlier claim that 8 may be neglected

compared with o in the Principle of Angular Momentum and also that it could be
easily cancelled by the effect of the springs.

The calculated value 8, of the angular velocity of the car when it leaves the ramp will
persist unchanged throughout the subsequent flight through the air since air
resistance is being neglected and the only force acts through the centre of gravity.
The angle of forward rotation of the car during its flight is therefore

0, =0,t, = 0.263x2.25=0.592 (rad) = 34°
On landing, the nose down angle of the car will therefore be
9, —o=34°-12°=22°

This value must be regarded as approximate since it depends to a certain degree on
the assumed nature of the mass distribution of the car.

Since air resistance is neglected, the speed on landing is approximately 48.6ms-1 and
the direction of the velocity vector is 14.3° below the vertical. When this is combined
with the angle of the car (22°) when it strikes the ground, the rotational behaviour of
the car upon striking the sandpit can be determined.
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Figure 7: Rotational motion just after impact

Again using the Principle of Angular Momentum (with moments about F to
eliminate the moments of the impact forces) it is seem that
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I:6 = -Mg(d/3)cos ¢

where ¢ is the angle made by the car with the horizontal as shown in Figure 7. Now
2
=I5+ M(z—;—)

and so I; = Md?*/18. Hence

d 2
I =1, +M(§) = Md*/6

Thus
¢ =—(2g/d)cos¢

which on integration with respect to ¢ yields
%d)z — —(2g/d)sing+C
Now at impact

¢=(3V,/d)sin(8, - 6,) = 6.98 (rad / sec) while 8 = 22° = 0.384 (rad), and so C = 26.96.

When ¢ = nt/2 (radians) it is seen that ¢ =2+/26.96—7.01 =8.93 and so the car will
begin to rotate end-over-end in its direction of motion along the sandpit.

7. CONCLUSIONS

The analysis indicates that a jump of 100 metres is feasible with the equipment
described. One small area of doubt is the behaviour of the car on its springs after
encountering the change of slope at the start of the ramp. Another is the final nose
down angle of the car, the value of which depends on the distribution of mass within
the car; an estimate has had to be made on this matter.

The speed on landing, and the height from which the car descends (7.0m), mean that
the jump is a very hazardous stunt. The danger could be reduced if a nylon mesh
barrier was placed at the landing zone. In Appendix B a suggested form of such a
barrier is described.

Fortunately, sponsorship money was not forthcoming for the attempt and it was
cancelled.
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APPENDIX A: THE EFFECT OF AIR RESISTANCE ON THE LENGTH OF THE JUMP

To determine the reduction in the range R of the jump caused by air resistance, use
will be made of a result obtained by Brearley [2]. That article investigated the effect
of air resistance on the long jump of an athlete, and is relevant because the
approximations used in it are the same as those applicable to the car jump, being
based on the face that the angle of take-off is small. It was shown by Brearley [2] that

the reduction (8R;) in the range R; is
8R, = pSC, R /(4M)

Using the values listed earlier for the car travelling through air, it is seen that

OR; = 1.85 (metres). Thus air resistance will reduce the calculated length by less than
two metres, which justifies the claim that it may be safely neglected in the
calculations.

APPENDIX B: A LANDING SAFETY NET

A nylon rope mesh, securely attached to a strong steel frame, would help to cushion
the shock of landing. Figure 8 shows a suggested form for such a net.
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Figure 8: Side and front elevation sketches of a proposed nylon mesh landing net

In Figure 8, the double lines represent substantial steel members, the single lines
represent thick nylon ropes. The wheels permit the safety net to run forward under
the impact of the car, and also enable the barrier to be moved by means of a tractor
or mobile crane.

However if the net wheels moved along ground level, the impact point of the car
would be above ground level and the distance of the jump would be reduced
because of the reduction in the height of fall to impact.



